[1]

Ren Y, Xie H, Liu L, Jia D, Yao K, et al. 2018. Processing and prebiotics characteristics of β-glucan extract from highland barley. Applied Sciences 8:1481

doi: 10.3390/app8091481
[2]

Yang Y, Ma S, Wang X, Zheng X. 2017. Modification and application of dietary fiber in foods. Journal of Chemistry 2017:9340427

doi: 10.1155/2017/9340427
[3]

Bader Ul Ain H, Saeed F, Ahmed A, Asif Khan M, Niaz B, et al. 2019. Improving the physicochemical properties of partially enhanced soluble dietary fiber through innovative techniques: a coherent review. Journal of Food Processing and Preservation 43:e13917

doi: 10.1111/jfpp.13917
[4]

Dong Y, Chen L, Gutin B, Zhu H. 2019. Total, insoluble, and soluble dietary fiber intake and insulin resistance and blood pressure in adolescents. European Journal of Clinical Nutrition 73:1172−78

doi: 10.1038/s41430-018-0372-y
[5]

Papakonstantinou E, Xaidara M, Siopi V, Giannoglou M, Katsaros G, et al. 2022. Effects of spaghetti differing in soluble fiber and protein content on glycemic responses in humans: a randomized clinical trial in healthy subjects. International Journal of Environmental Research and Public Health 19:3001

doi: 10.3390/ijerph19053001
[6]

Bader Ul Ain H, Saeed F, Sultan MT, Afzaal M, Imran A, et al. 2020. Effect of thermally treated barley dietary fiber against hypercholesterolemia. Food Science & Nutrition 8:5259−66

doi: 10.1002/fsn3.1513
[7]

Zhu L, Gao M, Li H, Deng Z, Zhang B, et al. 2021. Effects of soluble dietary fiber from sweet potato dregs on the structures of intestinal flora in mice. Food Bioscience 40:100880

doi: 10.1016/j.fbio.2021.100880
[8]

Gan J, Xie L, Peng G, Xie J, Chen Y, et al. 2021. Systematic review on modification methods of dietary fiber. Food Hydrocolloids 119:106872

doi: 10.1016/j.foodhyd.2021.106872
[9]

Jia M, Chen J, Liu X, Xie M, Nie S, et al. 2019. Structural characteristics and functional properties of soluble dietary fiber from defatted rice bran obtained through Trichoderma viride fermentation. Food Hydrocolloids 94:468−74

doi: 10.1016/j.foodhyd.2019.03.047
[10]

Wang M, Zhou W, Yang Y, Xing J, Lin Y. 2022. Penicillium sp. Cis16 improves soluble dietary fiber content in citrus dregs fermentation. Food Biotechnology 36(3):191−208

doi: 10.1080/08905436.2022.2091592
[11]

Li Y, Niu L, Guo Q, Shi L, Deng X, et al. 2022. Effects of fermentation with lactic bacteria on the structural characteristics and physicochemical and functional properties of soluble dietary fiber from prosomillet bran. LWT 154:112609

doi: 10.1016/j.lwt.2021.112609
[12]

Chu J, Zhao H, Lu Z, Lu F, Bie X, et al. 2019. Improved physicochemical and functional properties of dietary fiber from millet bran fermented by Bacillus natto. Food Chemistry 294:79−86

doi: 10.1016/j.foodchem.2019.05.035
[13]

López-Mondéjar R, Zühlke D, Becher D, Riedel K, Baldrian P. 2016. Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Scientific Reports 6:25279

doi: 10.1038/srep25279
[14]

Mulla MZ, Ahmed J, Baskaya-Sezer D, Al-Ruwaih N. 2021. Effect of high-pressure treatment and cellulase-mediate hydrolysis on functional, rheological and microstructural properties of garden cress seed residual fibre. International Journal of Food Science & Technology15464

doi: 10.1111/ijfs.15464
[15]

Cheng L, Zhang X, Hong Y, Li Z, Li C, et al. 2017. Characterisation of physicochemical and functional properties of soluble dietary fibre from potato pulp obtained by enzyme-assisted extraction. International Journal of Biological Macromolecules 101:1004−11

doi: 10.1016/j.ijbiomac.2017.03.156
[16]

Sánchez C. 2009. Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnology Advances 27:185−94

doi: 10.1016/j.biotechadv.2008.11.001
[17]

Bhatt P, Tiwari M, Parmarick P, Bhatt K, Gangola S, et al. 2022. Insights into the catalytic mechanism of ligninolytic peroxidase and laccase in lignin degradation. Bioremediation Journal 26:281−91

doi: 10.1080/10889868.2021.1973951
[18]

Yang C, Wang T, Gao L, Yin H, Lü X. 2017. Isolation, identification and characterization of lignin-degrading bacteria from Qinling, China. Journal of Applied Microbiology 123:1447−60

doi: 10.1111/jam.13562
[19]

Mei J, Shen X, Gang L, Xu H, Wu F, et al. 2020. A novel lignin degradation bacteria-Bacillus amyloliquefaciens SL-7 used to degrade straw lignin efficiently. Bioresource Technology 310:123445

doi: 10.1016/j.biortech.2020.123445
[20]

Mathews SL, Grunden AM, Pawlak J. 2016. Degradation of lignocellulose and lignin by Paenibacillus glucanolyticus. International Biodeterioration & Biodegradation 110:79−86

doi: 10.1016/j.ibiod.2016.02.012
[21]

Chen L, Gu W, Xu H, Yang G, Shan X, et al. 2018. Comparative genome analysis of Bacillus velezensis reveals a potential for degrading lignocellulosic biomass. 3 Biotech 8:253

doi: 10.1007/s13205-018-1270-7
[22]

Ma L, Lu Y, Yan H, Wang X, Yi Y, et al. 2020. Screening of cellulolytic bacteria from rotten wood of Qinling (China) for biomass degradation and cloning of cellulases from Bacillus methylotrophicus. BMC Biotechnology 20:2

doi: 10.1186/s12896-019-0593-8
[23]

Rathinam NK, Gorky, Bibra M, Salem DR, Sani RK. 2020. Bioelectrochemical approach for enhancing lignocellulose degradation and biofilm formation in Geobacillus strain WSUCF1. Bioresource Technology 295:122271

doi: 10.1016/j.biortech.2019.122271
[24]

Zainith S, Purchase D, Saratale GD, Ferreira LFR, Bilal M, et al. 2019. Isolation and characterization of lignin-degrading bacterium Bacillus aryabhattai from pulp and paper mill wastewater and evaluation of its lignin-degrading potential. 3 Biotech 9:92

doi: 10.1007/s13205-019-1631-x
[25]

Jang KY, Cho SM, Seok SJ, Kong WS, Kim GH, et al. 2009. Screening of biodegradable function of indigenous ligno-degrading mushroom using dyes. Mycobiology 37:53−61

[26]

Wang H, Li Z, Yahyaoui S, Hanafy H, Seliem MK, et al. 2021. Effective adsorption of dyes on an activated carbon prepared from carboxymethyl cellulose: experiments, characterization and advanced modelling. Chemical Engineering Journal 417:128116

doi: 10.1016/j.cej.2020.128116
[27]

Zhang Z, Shah AM, Mohamed H, Tsiklauri N, Song Y. 2021. Isolation and screening of microorganisms for the effective pretreatment of lignocellulosic agricultural wastes. BioMed Research International 2021:5514745

doi: 10.1155/2021/5514745
[28]

Dobrzyński J, Wróbel B, Górska EB. 2022. Cellulolytic properties of a potentially lignocellulose-degrading Bacillus sp. 8E1A strain isolated from bulk soil. Agronomy 12:665

doi: 10.3390/agronomy12030665
[29]

Sui M, Rong J, Zhang Y, Xie H, Zhang C. 2021. Screening of cellulose degrading bacteria and construction of complex microflora. IOP Conference Series:Earth and Environmental Science 632:032021

doi: 10.1088/1755-1315/632/3/032021
[30]

Zhang G, Dong Y. 2022. Design and application of an efficient cellulose-degrading microbial consortium and carboxymethyl cellulase production optimization. Frontiers in Microbiology 13:957444

doi: 10.3389/fmicb.2022.957444
[31]

Wang Q, Qian Y, Ma Y, Zhu C. 2018. A preliminary study on the newly isolated high laccase-producing fungi: screening, strain characteristics and induction of laccase production. Open Life Sciences 13:463−9

doi: 10.1515/biol-2018-0055
[32]

Huy ND, Tien NTT, Huyen LT, Quang HT, Tung TQ, et al. 2017. Screening and production of manganese peroxidase from Fusarium sp. on residue materials. Mycobiology 45:52−56

doi: 10.5941/MYCO.2017.45.1.52
[33]

Luciano Silveira MH, Rau M, Pinto da Silva Bon E, Andreaus J. 2012. A simple and fast method for the determination of endo- and exo-cellulase activity in cellulase preparations using filter paper. Enzyme and Microbial Technology 51:280−85

doi: 10.1016/j.enzmictec.2012.07.010
[34]

Buchanan RE, Giddons NE. 1984. Bacillus and cocci. In Bergey's manual of determinative bacteriology, ed. Wang HJ. Eighth Edition. Beijing: Science Press. pp. 729−59.

[35]

Yung PT, Lester E, Ponce A. 2020. Quantitative and fast sterility assurance testing of surfaces by enumeration of germinable endospores. Scientific Reports 10:431

doi: 10.1038/s41598-019-57175-3
[36]

Li F, Xie Y, Gao X, Shan M, Sun C, et al. 2020. Screening of cellulose degradation bacteria from Min pigs and optimization of its cellulase production. Electronic Journal of Biotechnology 48:29−35

doi: 10.1016/j.ejbt.2020.09.001
[37]

Roy P, Chatterjee S, Saha NC, Gantait VV. 2020. Characterization of a starch hydrolysing Bacillus flexus U8 isolated from rhizospheric soil of the paddy plants. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 90(5):1075−81

doi: 10.1007/s40011-020-01176-0
[38]

Benabda O, M’hir S, Kasmi M, Mnif W, Hamdi M. 2019. Optimization of protease and amylase production by Rhizopus oryzae cultivated on bread waste using solid-state fermentation. Journal of Chemistry 2019:3738181

doi: 10.1155/2019/3738181
[39]

Ma H, Wang L, Yu H, Wang W, Wu G, et al. 2022. Protease-producing lactic acid bacteria with antibacterial properties and their potential use in soybean meal fermentation. Chemical and Biological Technologies in Agriculture 9:40

doi: 10.1186/s40538-022-00303-5