[1] |
Liu Y. 2006. Historical and modern genetics of plant graft hybridization. Advances in Genetics 56:101−29 doi: 10.1016/S0065-2660(06)56003-1 |
[2] |
Cookson SJ, Clemente Moreno MJ, Hevin C, Nyamba Mendome LZ, Delrot S, et al. 2013. Graft union formation in grapevine induces transcriptional changes related to cell wall modification, wounding, hormone signalling, and secondary metabolism. Journal of Experimental Botany 64(10):2997−3008 doi: 10.1093/jxb/ert144 |
[3] |
Wada M, Nishitani C, Komori S. 2020. Stable and efficient transformation of apple. Plant Biotechnol 37:163−70 doi: 10.5511/plantbiotechnology.20.0602a |
[4] |
Bisognin C, Schneider B, Salm H, Grando MS, Jarausch W, et al. 2008. Apple proliferation resistance in apomictic rootstocks and its relationship to phytoplasma concentration and simple sequence repeat genotypes. Phytopathology 98:153−58 doi: 10.1094/PHYTO-98-2-0153 |
[5] |
Expósito A, Pujolà M, Achaerandio I, Giné A, Escudero N, et al. 2020. Tomato and melon Meloidogyne resistant rootstocks improve crop yield but melon fruit quality is influenced by the cropping season. Frontiers in Plant Science 11:560024 doi: 10.3389/fpls.2020.560024 |
[6] |
Xu Q, Guo S, Li L, An Y, Shu S, et al. 2016. Proteomics analysis of compatibility and incompatibility in grafted cucumber seedlings. Plant Physiology and Biochemistry 105:21−28 doi: 10.1016/j.plaphy.2016.04.001 |
[7] |
Goldschmidt EE. 2014. Plant grafting: new mechanisms, evolutionary implications. Frontiers in Plant Science 5:727 doi: 10.3389/fpls.2014.00727 |
[8] |
Chen Z, Zhao J, Hu F, Qin Y, Wang X, et al. 2017. Transcriptome changes between compatible and incompatible graft combination of Litchi chinensis by digital gene expression profile. Scientific Reports 7:3954 doi: 10.1038/s41598-017-04328-x |
[9] |
Loupit G, Cookson SJ. 2020. Identifying molecular markers of successful graft union formation and compatibility. Frontiers in Plant Science 11:610352 doi: 10.3389/fpls.2020.610352 |
[10] |
Ribeiro LM, Nery LA, Vieira LM, Mercadante-Simões MO. 2015. Histological study of micrografting in passionfruit. Plant Cell, Tissue and Organ Culture 123:173−81 doi: 10.1007/s11240-015-0824-1 |
[11] |
Yin H, Yan B, Sun J, Jia P, Zhang Z, et al. 2012. Graft-union development: a delicate process that involves cell–cell communication between scion and stock for local auxin accumulation. Journal of Experimental Botany 63:4219−32 doi: 10.1093/jxb/ers109 |
[12] |
Wang J, Jiang L, Wu R. 2017. Plant grafting: how genetic exchange promotes vascular reconnection. New Phytologist 214:56−65 doi: 10.1111/nph.14383 |
[13] |
Xia C, Zheng Y, Huang J, Fei Z, Zhang C. 2019. Identification of phloem mobile mRNAs using the Solanaceae heterograft system. In Phloem. Methods in Molecular Biology, ed. Liesche J. vol 2014. New York: Humana, NY. pp. 421−31. https://doi.org/10.1007/978-1-4939-9562-2_32 |
[14] |
Liu W, Wang Q, Zhang R, Liu M, Wang C, et al. 2022. Rootstock-scion exchanging mRNAs participate in the pathways of amino acids and fatty acid metabolism in cucumber under early chilling stress. Horticulture Research 9:uhac031 doi: 10.1093/hr/uhac031 |
[15] |
Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, Ghaffari SH. 2019. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. Journal of Cellular Physiology 234:5451−65 doi: 10.1002/jcp.27486 |
[16] |
Deng Z, Wu H, Li D, Li L, Wang Z, et al. 2021. Root-to-Shoot long-distance mobile miRNAs identified from Nicotiana rootstocks. International Journal of Molecular Sciences 22:12821 doi: 10.3390/ijms222312821 |
[17] |
Li S, Wang X, Xu W, Liu T, Cai C, et al. 2021. Unidirectional movement of small RNAs from shoots to roots in interspecific heterografts. Nature Plants 7:50−59 doi: 10.1038/s41477-020-00829-2 |
[18] |
Pagliarani C, Vitali M, Ferrero M, Vitulo N, Incarbone M, et al. 2017. The accumulation of miRNAs differentially modulated by drought stress is affected by grafting in grapevine. Plant Physiology 173:2180−95 doi: 10.1104/pp.16.01119 |
[19] |
Ahsan MU, Hayward A, Alam M, Bandaralage JH, Topp B, et al. 2019. Scion control of miRNA abundance and tree maturity in grafted avocado. BMC Plant Biology 19:382 doi: 10.1186/s12870-019-1994-5 |
[20] |
Sharma A, Zheng B. 2019. Molecular responses during plant grafting and its regulation by auxins, cytokinins, and gibberellins. Biomolecules 9:397 doi: 10.3390/biom9090397 |
[21] |
Tan H, Xiao L, Gao S, Li Q, Chen J, et al. 2015. TRICHOME AND ARTEMISININ REGULATOR 1 is required for trichome development and artemisinin biosynthesis in Artemisia annua. Molecular Plant 8:1396−411 doi: 10.1016/j.molp.2015.04.002 |
[22] |
Yan T, Li L, Xie L, Chen M, Shen Q, et al. 2018. A novel HD-ZIP IV/MIXTA complex promotes glandular trichome initiation and cuticle development in Artemisia annua. New Phytologist 218:567−78 doi: 10.1111/nph.15005 |
[23] |
Alejos-Gonzalez F, Qu G, Zhou L, Saravitz CH, Shurtleff JL, et al. 2011. Characterization of development and artemisinin biosynthesis in self-pollinated Artemisia annua plants. Planta 234:685−97 doi: 10.1007/s00425-011-1430-z |
[24] |
Wilding EI, Brown JR, Bryant AP, Chalker AF, Holmes DJ, et al. 2000. Identification, evolution, and essentiality of the mevalonate pathway for isopentenyl diphosphate biosynthesis in gram-positive cocci. Journal of Bacteriology 182:4319−4327 doi: 10.1128/JB.182.15.4319-4327.2000 |
[25] |
Rohdich F, Kis K, Bacher A, Eisenreich W. 2001. The non-mevalonate pathway of isoprenoids: genes, enzymes and intermediates. Current Opinion in Chemical Biology 5:535−40 doi: 10.1016/S1367-5931(00)00240-4 |
[26] |
Lv Z, Zhang L, Tang K. 2017. New insights into artemisinin regulation. Plant Signaling & Behavior 12:e1366398 doi: 10.1080/15592324.2017.1366398 |
[27] |
Fu X, Peng B, Hassani D, Xie L, Liu H, et al. 2021. AaWRKY9 contributes to light- and jasmonate-mediated to regulate the biosynthesis of artemisinin in Artemisia annua. New Phytologist 231:1858−74 doi: 10.1111/nph.17453 |
[28] |
Xia C, Zheng Y, Huang J, Zhou X, Li R, et al. 2018. Elucidation of the mechanisms of long-distance mRNA movement in a Nicotiana benthamiana/Tomato heterograft system. Plant Physiology 177:745−58 doi: 10.1104/pp.17.01836 |
[29] |
Notaguchi M, Kurotani KI, Sato Y, Tabata R, Kawakatsu Y, et al. 2020. Cell-cell adhesion in plant grafting is facilitated by β-1,4-glucanases. Science 369:698−702 doi: 10.1126/science.abc3710 |
[30] |
Shen Q, Zhang L, Liao Z, Wang S, Yan T, et al. 2018. The genome of Artemisia annua provides insight into the evolution of Asteraceae family and artemisinin biosynthesis. Molecular Plant 11:776−88 doi: 10.1016/j.molp.2018.03.015 |
[31] |
Buoso S, Loschi A. 2019. Micro-Tom tomato grafting for Stolbur-phytoplasma transmission: different grafting techniques. In Phytoplasmas. Methods in Molecular Biology, ed. Musetti R, Pagliari L. vol 1875. New York: Humana Press, NY. pp. 9−19. https://doi.org/10.1007/978-1-4939-8837-2_2 |
[32] |
Owens NDL, De Domenico E, Gilchrist MJ. 2019. An RNA-Seq Protocol for Differential Expression Analysis. Cold Spring Harbor Protocols Published in Advance doi: 10.1101/pdb.prot098368 |
[33] |
Zhou X, Oshlack A, Robinson MD. 2013. miRNA-Seq normalization comparisons need improvement. RNA 19:733−34 doi: 10.1261/rna.037895.112 |
[34] |
Lv Z, Li J, Qiu S, Qi F, Su H, et al. 2022. The transcription factors TLR1 and TLR2 negatively regulate trichome density and artemisinin levels in Artemisia annua. Journal of Integrative Plant Biology 64:1212−28 doi: 10.1111/jipb.13258 |
[35] |
Dong B, Wang X, Jiang R, Fang S, Li J, et al. 2021. AaCycTL regulates cuticle and trichome development in Arabidopsis and Artemisia annua L. Frontiers in Plant Science 12:808283 doi: 10.3389/fpls.2021.808283 |
[36] |
Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12:357−60 doi: 10.1038/nmeth.3317 |
[37] |
Robinson MD, McCarthy DJ, Smyth GK. 2009. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139−40 doi: 10.1093/bioinformatics/btp616 |
[38] |
Wu H, Ma Y, Chen T, Wang M, Wang X. 2012. PsRobot: a web-based plant small RNA meta-analysis toolbox. Nucleic Acids Research 40:W22−W28 doi: 10.1093/nar/gks554 |
[39] |
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. 2000. Gene ontology: tool for the unification of biology. Nature Genetics 25:25−29 doi: 10.1038/75556 |
[40] |
Consortium TGO, Carbon S, Douglass E, Good BM, Unni DR, et al. 2021. The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Research 49:D325−D334 doi: 10.1093/nar/gkaa1113 |
[41] |
Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. 2021. KEGG: integrating viruses and cellular organisms. Nucleic Acids Research 49:D545−D551 doi: 10.1093/nar/gkaa970 |
[42] |
Šimura J, Antoniadi I, Široká J, Tarkowská D, Strnad M, et al. 2018. Plant hormonomics: multiple phytohormone profiling by targeted metabolomics. Plant Physiology 177:476−89 doi: 10.1104/pp.18.00293 |
[43] |
Miao L, Li S, Shi A, Li Y, He C, et al. 2021. Genome-wide analysis of the AINTEGUMENTA-like (AIL) transcription factor gene family in pumpkin (Cucurbita moschata Duch.) and CmoANT1.2 response in graft union healing. Plant Physiology and Biochemistry 162:706−15 doi: 10.1016/j.plaphy.2021.03.036 |
[44] |
Dubois M, van den Broeck L, Inzé D. 2018. The pivotal role of ethylene in plant growth. Trends in Plant Science 23:311−23 doi: 10.1016/j.tplants.2018.01.003 |
[45] |
Cebrián G, Iglesias-Moya J, García A, Martínez J, Romero J, et al. 2021. Involvement of ethylene receptors in the salt tolerance response of Cucurbita pepo. Horticulture Research 8:73 doi: 10.1038/s41438-021-00508-z |
[46] |
Crouzet J, Roland J, Peeters E, Trombik T, Ducos E, et al. 2013. NtPDR1, a plasma membrane ABC transporter from Nicotiana tabacum, is involved in diterpene transport. Plant Molecular Biology 82:181−92 doi: 10.1007/s11103-013-0053-0 |
[47] |
Gräfe K, Schmitt L. 2021. The ABC transporter G subfamily in Arabidopsis thaliana. Journal of Experimental Botany 72:92−106 doi: 10.1093/jxb/eraa260 |
[48] |
Zhao J, Yu N, Ju M, Fan B, Zhang Y, et al. 2019. ABC transporter OsABCG18 controls the shootward transport of cytokinins and grain yield in rice. Journal of Experimental Botany 70:6277−91 doi: 10.1093/jxb/erz382 |
[49] |
Wang B, Kashkooli AB, Sallets A, Ting HM, de Ruijter NCA, et al. 2016. Transient production of artemisinin in Nicotiana benthamiana is boosted by a specific lipid transfer protein from A. annua. Metabolic Engineering 38:159−69 doi: 10.1016/j.ymben.2016.07.004 |
[50] |
Zhao Y, Wang S, Wu W, Li L, Jiang T, et al. 2018. Clearance of maternal barriers by paternal miR159 to initiate endosperm nuclear division in Arabidopsis. Nature Communications 9:5011 doi: 10.1038/s41467-018-07429-x |
[51] |
Clepet C, Devani RS, Boumlik R, Hao Y, Morin H, et al. 2021. The miR166–SlHB15A regulatory module controls ovule development and parthenocarpic fruit set under adverse temperatures in tomato. Molecular Plant 14:1185−98 doi: 10.1016/j.molp.2021.05.005 |
[52] |
Yu Y, Sun F, Chen N, Sun G, Wang C, et al. 2021. MiR396 regulatory network and its expression during grain development in wheat. Protoplasma 258:103−13 doi: 10.1007/s00709-020-01556-3 |
[53] |
Bukhari SAH, Shang S, Zhang M, Zheng W, Zhang G, et al. 2015. Genome-wide identification of chromium stress-responsive micro RNAs and their target genes in tobacco (Nicotiana tabacum) roots. Environmental Toxicology and Chemistry 34:2573−82 doi: 10.1002/etc.3097 |
[54] |
Rao S, Balyan S, Jha S, Mathur S. 2020. Novel insights into expansion and functional diversification of MIR169 family in tomato. Planta 251:55 doi: 10.1007/s00425-020-03346-w |
[55] |
Zhao H, Wu D, Kong F, Lin K, Zhang H, et al. 2017. The Arabidopsis thaliana nuclear factor Y transcription factors. Frontiers in Plant Science 7:2045 doi: 10.3389/fpls.2016.02045 |
[56] |
Matías-Hernández L, Jiang W, Yang K, Tang K, Brodelius PE, et al. 2017. AaMYB1 and its orthologue AtMYB61 affect terpene metabolism and trichome development in Artemisia annua and Arabidopsis thaliana. The Plant Journal 90:520−34 doi: 10.1111/tpj.13509 |
[57] |
Tan X, Calderon-Villalobos LIA, Sharon M, Zheng C, Robinson CV, et al. 2007. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640−45 doi: 10.1038/nature05731 |
[58] |
Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, et al. 2008. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64−69 doi: 10.1126/science.1150646 |
[59] |
Hagen G, Guilfoyle T. 2002. Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Molecular Biology 49:373−85 doi: 10.1023/A:1015207114117 |
[60] |
Cortleven A, Leuendorf JE, Frank M, Pezzetta D, Bolt S, et al. 2019. Cytokinin action in response to abiotic and biotic stresses in plants. Plant, Cell & Environment 42:998−1018 doi: 10.1111/pce.13494 |
[61] |
Acheampong AK, Shanks C, Cheng CY, Schaller GE, Dagdas Y, et al. 2020. EXO70D isoforms mediate selective autophagic degradation of type-A ARR proteins to regulate cytokinin sensitivity. PNAS 117:27034−43 doi: 10.1073/pnas.2013161117 |
[62] |
Fujii H, Verslues PE, Zhu JK. 2007. Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. The Plant Cell 19:485−94 doi: 10.1105/tpc.106.048538 |
[63] |
Kuroha T, Nagai K, Gamuyao R, Wang D, Furuta T, et al. 2018. Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Science 361:181−86 doi: 10.1126/science.aat1577 |