[1]

Fincham WNW, Redhead JW, Woodcock BA, Pywell RF. 2022. Exploring drivers of within-field crop yield variation using a national precision yield network. Journal of Applied Ecology 60:319−29

doi: 10.1111/1365-2664.14323
[2]

Echer FR, Cordeiro CFDS, de la Torre ERJ. 2020. The effects of nitrogen, phosphorus, and potassium levels on the yield and fiber quality of cotton cultivars. Journal of Plant Nutrition 43:921−32

doi: 10.1080/01904167.2019.1702204
[3]

Liao Z, Zeng H, Fan J, Lai Z, Zhang C, et al. 2022. Effects of plant density, nitrogen rate and supplemental irrigation on photosynthesis, root growth, seed yield and water-nitrogen use efficiency of soybean under ridge-furrow plastic mulching. Agricultural Water Management 268:107688

doi: 10.1016/j.agwat.2022.107688
[4]

Uçgun K, Altindal M. 2021. Effects of increasing doses of nitrogen, phosphorus, and potassium on the uptake of other nutrients in sweet cherry trees. Communications in Soil Science and Plant Analysis 52:1248−55

doi: 10.1080/00103624.2021.1879122
[5]

DalCorso G, Manara A, Piasentin S, Furini A. 2014. Nutrient metal elements in plants. Metallomics 6:1770−88

doi: 10.1039/C4MT00173G
[6]

Ho LC, White PJ. 2005. A cellular hypothesis for the induction of blossom-end rot in tomato fruit. Annals of Botany 95:571−81

doi: 10.1093/aob/mci065
[7]

Torres E, Recasens I, Lordan J, Alegre S. 2017. Combination of strategies to supply calcium and reduce bitter pit in 'Golden Delicious' apples. Scientia Horticulturae 217:179−88

doi: 10.1016/j.scienta.2017.01.028
[8]

Tanoi K, Kobayashi NI. 2015. Leaf Senescence by magnesium deficiency. Plants 4:756−72

doi: 10.3390/plants4040756
[9]

Xie R, Zhao J, Lu L, Ge J, Brown PH, et al. 2019. Efficient phloem remobilization of Zn protects apple trees during the early stages of Zn deficiency. Plant, Cell & Environment 42:3167−81

doi: 10.1111/pce.13621
[10]

Huang S, Wang P, Yamaji N, Ma J. 2020. Plant nutrition for human nutrition: hints from rice research and future perspectives. Molecular Plant 13:825−35

doi: 10.1016/j.molp.2020.05.007
[11]

Thor K. 2019. Calcium-nutrient and messenger. Frontiers in Plant Science 10:440

doi: 10.3389/fpls.2019.00440
[12]

White PJ, Broadley MR. 2003. Calcium in plants. Annals of Botany 92:487−511

doi: 10.1093/aob/mcg164
[13]

Montanaro G, Dichio B, Xiloyannis C. 2010. Significance of fruit transpiration on calcium nutrition in developing apricot fruit. Journal of Plant Nutrition and Soil Science 173:618−22

doi: 10.1002/jpln.200900376
[14]

Hocking B, Tyerman SD, Burton RA, Gilliham M. 2016. Fruit calcium: transport and physiology. Frontiers in Plant Science 7:569

doi: 10.3389/fpls.2016.00569
[15]

Torres E, Alegre S, Recasens I, Asín L, Lordan J. 2021. Integral procedure to predict bitter pit in 'Golden Smoothee' apples based on calcium content and symptom induction. Scientia Horticulturae 277:109829

doi: 10.1016/j.scienta.2020.109829
[16]

Schlegel TK, Schönherr J. 2002. Stage of development affects penetration of calcium chloride into apple fruits. Journal of Plant Nutrition and Soil Science 165:738−45

doi: 10.1002/jpln.200290012
[17]

Sun C, Zhang W, Qu H, Yan L, Li L, et al. 2022. Comparative physiological and transcriptomic analysis reveal MdWRKY75 associated with sucrose accumulation in postharvest 'Honeycrisp' apples with bitter pit. BMC Plant Biology 22:71

doi: 10.1186/s12870-022-03453-8
[18]

Val J, Monge E, Risco D, Blanco A. 2008. Effect of pre-harvest calcium sprays on calcium concentrations in the skin and flesh of apples. Journal of Plant Nutrition 31:1889−905

doi: 10.1080/01904160802402757
[19]

Yu X, Wang J, Nie P, Xue X, Wang G, et al. 2018. Control efficacy of Ca-containing foliar fertilizers on bitter pit in bagged 'Fuji' apple and effects on the Ca and N contents of apple fruits and leaves. Journal of the Science of Food and Agriculture 98:5435−43

doi: 10.1002/jsfa.9087
[20]

Chardonnet CO, Charron CS, Sams CE, Conway WS. 2003. Chemical changes in the cortical tissue and cell walls of calcium-infiltrated 'Golden Delicious' apples during storage. Postharvest Biology and Technology 28:97−111

doi: 10.1016/S0925-5214(02)00139-4
[21]

Raliya R, Saharan V, Dimkpa C, Biswas P. 2018. Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. Journal of Agricultural and Food Chemistry 66:6487−503

doi: 10.1021/acs.jafc.7b02178
[22]

de Freitas ST, do Amarante CVT, Mitcham EJ. 2015. Mechanisms regulating apple cultivar susceptibility to bitter pit. Scientia Horticulturae 186:54−60

doi: 10.1016/j.scienta.2015.01.039
[23]

Chhipa H. 2017. Nanofertilizers and nanopesticides for agriculture. Environmental Chemistry Letters 15:15−22

doi: 10.1007/s10311-016-0600-4
[24]

Liu R, Lal R. 2015. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment 514:131−39

doi: 10.1016/j.scitotenv.2015.01.104
[25]

Guleria G, Thakur S, Shandilya M, Sharma S, Thakur S, et al. 2023. Nanotechnology for sustainable agro-food systems: the need and role of nanoparticles in protecting plants and improving crop productivity. Plant Physiology and Biochemistry 194:533−49

doi: 10.1016/j.plaphy.2022.12.004
[26]

Sharma S, Rana VS, Pawar R, Lakra J, Racchapannavar V. 2021. Nanofertilizers for sustainable fruit production: a review. Environmental Chemistry Letters 19:1693−714

doi: 10.1007/s10311-020-01125-3
[27]

Liu X, Zhang F, Zhang S, He X, Wang R, et al. 2005. Responses of peanut to Nano-calcium carbonate. Plant Nutrition and Fertilizer Science 11:385−89

doi: 10.3321/j.issn:1008-505X.2005.03.017
[28]

Feil SB, Rodegher G, Gaiotti F, Alzate Zuluaga MY, Carmona FJ, et al. 2021. Physiological and molecular investigation of urea uptake dynamics in Cucumis sativus L plants fertilized with urea-doped amorphous calcium phosphate nanoparticles. Frontiers in Plant Science 12:745581

doi: 10.3389/fpls.2021.745581
[29]

An J, Zhang X, Bi S, You C, Wang X, et al. 2019. MdbHLH93, an apple activator regulating leaf senescence, is regulated by ABA and MdBT2 in antagonistic ways. New Phytologist 222:735−51

doi: 10.1111/nph.15628
[30]

Wang X, Zhang J, Wang X, An J, You C, et al. 2022. The growth-promoting mechanism of Brevibacillus laterosporus AMCC100017 on apple rootstock Malus robusta. Horticultural Plant Journal 8:22−34

doi: 10.1016/j.hpj.2021.11.005
[31]

Wei K, Ma C, Sun K, Liu Q, Zhao N, et al. 2020. Relationship between optical properties and soluble sugar contents of apple flesh during storage. Postharvest Biology and Technology 159:111021

doi: 10.1016/j.postharvbio.2019.111021
[32]

Hu H, Brown PH. 1994. Localization of boron in cell walls of squash and tobacco and its association with pectin (evidence for a structural role of boron in the cell wall). Plant Physiology 105:681−89

doi: 10.1104/pp.105.2.681
[33]

Wang H, Wang J, Mujumdar AS, Jin X, Liu Z, et al. 2021. Effects of postharvest ripening on physicochemical properties, microstructure, cell wall polysaccharides contents (pectin, hemicellulose, cellulose) and nanostructure of kiwifruit (Actinidia deliciosa). Food Hydrocolloids 118:106808

doi: 10.1016/j.foodhyd.2021.106808
[34]

Taylor KA, Buchanan-Smith JG. 1992. A colorimetric method for the quantitation of uronic acids and a specific assay for galacturonic acid. Analytical Biochemistry 201:190−96

doi: 10.1016/0003-2697(92)90194-C
[35]

White PJ. 2001. The pathways of calcium movement to the xylem. Journal of Experimental Botany 52:891−99

doi: 10.1093/jexbot/52.358.891
[36]

Demidchik V, Bowen HC, Maathuis FJM, Shabala SN, Tester MA, et al. 2002. Arabidopsis thaliana root non-selective cation channels mediate calcium uptake and are involved in growth. The Plant Journal 32:799−808

doi: 10.1046/j.1365-313X.2002.01467.x
[37]

Yong J, Zhang R, Bi S, Li P, Sun L, et al. 2021. Sheet-like clay nanoparticles deliver RNA into developing pollen to efficiently silence a target gene. Plant Physiology 187:886−99

doi: 10.1093/plphys/kiab303
[38]

Liu C, Cao W, Lu Y, Huang H, Chen L, et al. 2009. Cerium under calcium deficiency—influence on the antioxidative defense system in spinach plants. Plant and Soil 323:285−94

doi: 10.1007/s11104-009-9937-9
[39]

Mohebbi S, Babalar M, Zamani Z, Askari MA. 2020. Influence of early season boron spraying and postharvest calcium dip treatment on cell-wall degrading enzymes and fruit firmness in 'Starking Delicious' apple during storage. Scientia Horticulturae 259:108822

doi: 10.1016/j.scienta.2019.108822
[40]

Ciccarese A, Stellacci AM, Gentilesco G, Rubino P. 2013. Effectiveness of pre- and post-veraison calcium applications to control decay and maintain table grape fruit quality during storage. Postharvest Biology and Technology 75:135−41

doi: 10.1016/j.postharvbio.2012.08.010
[41]

Ranjbar S, Rahemi M, Ramezanian A. 2018. Comparison of nano-calcium and calcium chloride spray on postharvest quality and cell wall enzymes activity in apple cv Red Delicious. Scientia Horticulturae 240:57−64

doi: 10.1016/j.scienta.2018.05.035
[42]

Balic I, Ejsmentewicz T, Sanhueza D, Silva C, Peredo T, et al. 2014. Biochemical and physiological study of the firmness of table grape berries. Postharvest Biology and Technology 93:15−23

doi: 10.1016/j.postharvbio.2014.02.001
[43]

Hou J, Riaz M, Yan L, Lu K, Jiang C. 2022. Effect of exogenous l-aspartate nano-calcium on root growth, calcium forms and cell wall metabolism of Brassica napus L. NanoImpact 27:100415

doi: 10.1016/j.impact.2022.100415
[44]

Zhu M, Yu J, Wang R, Zeng Y, Kang L, et al. 2023. Nano-calcium alleviates the cracking of nectarine fruit and improves fruit quality. Plant Physiology and Biochemistry 196:370−80

doi: 10.1016/j.plaphy.2023.01.058