[1]

Pauly D. 2007. The Sea around Us Project: Documenting and Communicating Global Fisheries Impacts on Marine Ecosystems. Ambio 36:290−95

doi: 10.1579/0044-7447(2007)36[290:TSAUPD]2.0.CO;2
[2]

Cermeño M, Kleekayai T, Amigo-Benavent M, Harnedy-Rothwell P, FitzGerald RJ. 2020. Current knowledge on the extraction, purification, identification, and validation of bioactive peptides from seaweed. Electrophoresis 41:1694−717

doi: 10.1002/elps.202000153
[3]

Sarmadi BH, Ismail A. 2010. Antioxidative peptides from food proteins: A review. Peptides 31:1949−56

doi: 10.1016/j.peptides.2010.06.020
[4]

Saito T. 2012. Antihypertensive peptides. In Functional Amino Acids & Functional Peptides - Technology & Marketing, ed. Muramoto K. Tokyo, Japan: CMC Press. pp. 60−71

[5]

Fleurence J, Morançais M, Dumay J. 2018. Seaweed proteins. In Proteins in food processing, ed. Yada RC. 2nd Edition. UK: Woodhead Publishing, Elsevier. pp. 245−62. https://doi.org/10.1016/B978-0-08-100722-8.00010-3

[6]

Chai TT, Law YC, Wong FC, Kim SK. 2017. Enzyme-assisted discovery of antioxidant peptides from edible marine invertebrates: A review. Marine Drugs 15:42

doi: 10.3390/md15020042
[7]

Tacias-Pascacio VG, Castañeda-Valbuena D, Morellon-Sterling R, Tavano O, Berenguer-Murcia Á, et al. 2021. Bioactive peptides from fisheries residues: A review of use of papain in proteolysis reactions. International Journal of Biological Macromolecules 184:415−28

doi: 10.1016/j.ijbiomac.2021.06.076
[8]

Kim SK, Wijesekara I. 2010. Development and biological activities of marine-derived bioactive peptides: A review. Journal of Functional Foods 2:1−9

doi: 10.1016/j.jff.2010.01.003
[9]

Geahchan S, Baharlouei P, Rahman A. 2022. Marine collagen: A promising biomaterial for wound healing, skin anti-aging, and bone regeneration. Marine Drugs 20:61

doi: 10.3390/md20010061
[10]

Ryu B, Kim SK. 2013. Potential beneficial effects of marine peptide on human neuron health. Current Protein & Peptide Science 14:173−76

doi: 10.2174/13892037113149990043
[11]

Leoni G, De Poli A, Mardirossian M, Gambato S, Florian F, et al. 2017. Myticalins: A novel multigenic family of linear, cationic antimicrobial peptides from marine mussels (Mytilus spp.). Marine Drugs 15:261

doi: 10.3390/md15080261
[12]

Kim SK, Mendis E. 2006. Bioactive compounds from marine processing byproducts – a review. Food Research International 39:383−93

doi: 10.1016/j.foodres.2005.10.010
[13]

Jafari H, Lista A, Siekapen MM, Ghaffari-Bohlouli P, Nie L, et al. 2020. Fish collagen: Extraction, characterization, and applications for biomaterials engineering. Polymers 12:2230

doi: 10.3390/polym12102230
[14]

Kim SK. 2018. Healthcare using marine organisms. Boca Raton, FL, USA: CRC Press Inc. pp. 28-33. https://doi.org/10.1201/b22344

[15]

Kim S, Byun H, Jeon Y, Ahn C, Cho D, et al. 1995. Functional properties of produced fish skin gelatin hydrolysate in a recycle three-step membrane enzyme reactor. Journal of the Korean Industrial and Engineering Chemistry Chem 6:984−96

[16]

Bauchart C, Chambon C, Mirand PP, Savary-Auzeloux I, Rémond D, et al. 2007. Peptides in rainbow trout (Oncorhynchus mykiss) muscle subjected to ice storage and cooking. Food Chemistry 100:1566−72

doi: 10.1016/j.foodchem.2005.12.023
[17]

Cruz-Casas DE, Aguilar CN, Ascacio-Valdés JA, Rodríguez-Herrera R, Chávez-González ML, et al. 2021. Enzymatic hydrolysis and microbial fermentation: The most favorable biotechnological methods for the release of bioactive peptides. Food Chemistry: Molecular Sciences 3:100047

doi: 10.1016/j.fochms.2021.100047
[18]

Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R. 2007. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology 40:1451−63

doi: 10.1016/j.enzmictec.2007.01.018
[19]

Jeon YJ, Kim SK. 2000. Production of chitooligosaccharides using an ultrafiltration membrane reactor and their antibacterial activity. Carbohydrate Polymers 41:133−41

doi: 10.1016/S0144-8617(99)00084-3
[20]

Zhou T, Wang N, Xue Y, Ding T, Liu X, et al. 2016. Electrospun tilapia collagen nanofibers accelerating wound healing via inducing keratinocytes proliferation and differentiation. Colloids and Surfaces B, Biointerfaces 143:415−22

doi: 10.1016/j.colsurfb.2016.03.052
[21]

Sampath Kumar NS, Nazeer RA, Jaiganesh R. 2012. Wound healing properties of collagen from the bone of two marine fishes. International Journal of Peptide Research and Therapeutics 18:185−92

doi: 10.1007/s10989-012-9291-2
[22]

Shalaby M, Agwa M, Saeed H, Khedr SM, Morsy O, et al. 2020. Fish scale collagen preparation, characterization and its application in wound healing. Journal of Polymers and the Environment 28:166−78

doi: 10.1007/s10924-019-01594-w
[23]

Han SB, Won B, Yang SC, Kim DH. 2021. Asterias pectinifera derived collagen peptide-encapsulating elastic nanoliposomes for the cosmetic application. Journal of Industrial and Engineering Chemistry 98:289−97

doi: 10.1016/j.jiec.2021.03.039
[24]

Marinho-Soriano E, Fonseca PC, Carneiro MAA, Moreira WSC. 2006. Seasonal variation in the chemical composition of two tropical seaweeds. Bioresource Technology 97:2402−6

doi: 10.1016/j.biortech.2005.10.014
[25]

Morgan KC, Wright JLC, Simpson FJ. 1980. Review of chemical constituents of the red alga Palmaria palmata (dulse). Economic Botany 34:27−50

doi: 10.1007/BF02859553
[26]

Murray J, Burt J. 2001. The Composition of Fish. Ministry of Technology, Torry Research Station, Torry Advisory Note. No. 38. FAO in partnership with Support unit for International Fisheries and Aquatic Research (SIFAR). http://megapesca.com/megashop/Torry%20Advisory%20Notes%20for%20website/Torry_Advisory_Note_No_38.htm

[27]

Meisel H, Walsh D, Murray B, Fitzgerald R. 2006. ACE inhibitory peptides. In Nutraceutical Proteins and Peptides in Health and Disease, eds. Mine Y, Shahidi F. Boca Raton, USA: CRC Press. pp. 269−315. https://doi.org/10.1201/9781420028836

[28]

Fitzgerald AJ, Rai PS, Marchbank T, Taylor GW, Ghosh S, et al. 2005. Reparative properties of a commercial fish protein hydrolysate preparation. Gut 54:775

doi: 10.1136/gut.2004.060608
[29]

Neshani A, Zare H, Akbari Eidgahi MR, Khaledi A, Ghazvini K. 2019. Epinecidin-1, a highly potent marine antimicrobial peptide with anticancer and immunomodulatory activities. BMC Pharmacology and Toxicology 20:33

doi: 10.1186/s40360-019-0309-7
[30]

Su BC, Hung GY, Tu YC, Yeh WC, Lin MC, et al. 2021. Marine antimicrobial peptide TP4 exerts anticancer effects on human synovial sarcoma cells via calcium overload, reactive oxygen species production and mitochondrial hyperpolarization. Marine Drugs 19:93

doi: 10.3390/md19020093
[31]

Sintsova O, Gladkikh I, Monastyrnaya M, Tabakmakher V, Yurchenko E, et al. 2021. Sea anemone kunitz-type peptides demonstrate neuroprotective activity in the 6-hydroxydopamine induced neurotoxicity model. Biomedicines 9:283

doi: 10.3390/biomedicines9030283
[32]

Zhou B, Perel P, Mensah GA, Ezzati M. 2021. Global epidemiology, health burden and effective interventions for elevated blood pressure and hypertension. Nature Reviews Cardiology 18:785−802

doi: 10.1038/s41569-021-00559-8
[33]

Intarasirisawat R, Benjakul S, Wu J, Visessanguan W. 2013. Isolation of antioxidative and ACE inhibitory peptides from protein hydrolysate of skipjack (Katsuwana pelamis) roe. Journal of Functional Foods 5:1854−62

doi: 10.1016/j.jff.2013.09.006
[34]

Saito M, Hagino H. 2005. Antihypertensive effect of oligopeptides derived from nori (Porphyra yezoensis) and Ala-Lys-Tyr-Ser-Tyr in rats. Journal of Japanese Society of Nutrition and Food Science 58:177−84

doi: 10.4327/jsnfs.58.177
[35]

Balti R, Nedjar-Arroume N, Adjé EY, Guillochon D, Nasri M. 2010. Analysis of novel angiotensin I-converting enzyme inhibitory peptides from enzymatic hydrolysates of cuttlefish (Sepia officinalis) muscle proteins. Journal of Agricultural and Food Chemistry 58:3840−46

doi: 10.1021/jf904300q
[36]

Balti R, Bougatef A, Sila A, Guillochon D, Dhulster P, Nedjar-Arroume N. 2015. Nine novel angiotensin I-converting enzyme (ACE) inhibitory peptides from cuttlefish (Sepia officinalis) muscle protein hydrolysates and antihypertensive effect of the potent active peptide in spontaneously hypertensive rats. Food Chemistry 170:519−25

doi: 10.1016/j.foodchem.2013.03.091
[37]

Lan X, Liao D, Wu S, Wang F, Sun J, et al. 2015. Rapid purification and characterization of angiotensin converting enzyme inhibitory peptides from lizard fish protein hydrolysates with magnetic affinity separation. Food Chemistry 182:136−42

doi: 10.1016/j.foodchem.2015.02.004
[38]

Wu S, Feng X, Lan X, Xu Y, Liao D. 2015. Purification and identification of Angiotensin-I Converting Enzyme (ACE) inhibitory peptide from lizard fish (Saurida elongata) hydrolysate. Journal of Functional Foods 13:295−99

doi: 10.1016/j.jff.2014.12.051
[39]

Chen J, Wang Y, Zhong Q, Wu Y, Xia W. 2012. Purification and characterization of a novel angiotensin-I converting enzyme (ACE) inhibitory peptide derived from enzymatic hydrolysate of grass carp protein. Peptides 33:52−58

doi: 10.1016/j.peptides.2011.11.006
[40]

Gu RZ, Li CY, Liu WY, Yi WX, Cai MY. 2011. Angiotensin I-converting enzyme inhibitory activity of low-molecular-weight peptides from Atlantic salmon (Salmo salar L.) skin. Food Research International 44:1536−40

doi: 10.1016/j.foodres.2011.04.006
[41]

Zheng SL, Luo QB, Suo SK, Zhao YQ, Chi CF, et al. 2022. Preparation, identification, molecular docking study and protective function on HUVECs of novel ACE inhibitory peptides from protein hydrolysate of skipjack tuna muscle. Marine Drugs 20:176

doi: 10.3390/md20030176
[42]

Ngo DH, Vo TS, Ryu B, Kim SK. 2016. Angiotensin- I- converting enzyme (ACE) inhibitory peptides from Pacific cod skin gelatin using ultrafiltration membranes. Process Biochemistry 51:1622−28

doi: 10.1016/j.procbio.2016.07.006
[43]

Ko JY, Kang N, Lee JH, Kim JS, Kim WS, et al. 2016. Angiotensin I-converting enzyme inhibitory peptides from an enzymatic hydrolysate of flounder fish (Paralichthys olivaceus) muscle as a potent anti-hypertensive agent. Process Biochemistry 51:535−41

doi: 10.1016/j.procbio.2016.01.009
[44]

Ghassem M, Arihara K, Babji AS, Said M, Ibrahim S. 2011. Purification and identification of ACE inhibitory peptides from Haruan (Channa striatus) myofibrillar protein hydrolysate using HPLC–ESI-TOF MS/MS. Food Chemistry 129:1770−77

doi: 10.1016/j.foodchem.2011.06.051
[45]

Suetsuna K, Maekawa K, Chen JR. 2004. Antihypertensive effects of Undaria pinnatifida (wakame) peptide on blood pressure in spontaneously hypertensive rats. The Journal of Nutritional Biochemistry 15:267−72

doi: 10.1016/j.jnutbio.2003.11.004
[46]

Li J, Li Q, Li J, Zhou B. 2014. Peptides derived from Rhopilema esculentum hydrolysate exhibit angiotensin converting enzyme (ACE) inhibitory and antioxidant abilities. Molecules 19:13587−602

doi: 10.3390/molecules190913587
[47]

Suo SK, Zhao YQ, Wang YM, Pan XY, Chi CF, et al. 2022. Seventeen novel angiotensin converting enzyme (ACE) inhibitory peptides from the protein hydrolysate of Mytilus edulis: isolation, identification, molecular docking study, and protective function on HUVECs. Food & Function 13:7831−46

doi: 10.1039/d2fo00275b
[48]

Pei Y, Cai S, Ryu B, Zhou C, Hong P, et al. 2022. An ACE inhibitory peptide from Isochrysis zhanjiangensis exhibits antihypertensive effect via anti-inflammation and anti-apoptosis in HUVEC and hypertensive rats. Journal of Functional Foods 92:105061

doi: 10.1016/j.jff.2022.105061
[49]

Suo Q, Yue Y, Wang J, Wu N, Geng L, et al. 2022. Isolation, identification and in vivo antihypertensive effect of novel angiotensin I-converting enzyme (ACE) inhibitory peptides from Spirulina protein hydrolysate. Food & Function 13:9108−18

doi: 10.1039/d2fo01207c
[50]

Je JY, Park PJ, Byun HG, Jung WK, Kim SK. 2005. Angiotensin I converting enzyme (ACE) inhibitory peptide derived from the sauce of fermented blue mussel, Mytilus edulis. Bioresource Technology 96:1624−29

doi: 10.1016/j.biortech.2005.01.001
[51]

Yokoyama K, Chiba H, Yoshikawa M. 1992. Peptide inhibitors for angiotensin I-converting enzyme from thermolysin digest of dried bonitot. Bioscience, Biotechnology, and Biochemistry 56:1541−45

doi: 10.1271/bbb.56.1541
[52]

Fujita H, Yamagami T, Ohshima K. 2001. Effects of an ace-inhibitory agent, katsuobushi oligopeptide, in the spontaneously hypertensive rat and in borderline and mildly hypertensive subjects. Nutrition Research 21:1149−58

doi: 10.1016/S0271-5317(01)00333-5
[53]

Kajimoto O, Nakano T, Kato T, Takahashi T. 2002. Hypotensive effects of jelly containing Wakame peptides on mild hypertensive subjects. Journal of Nutritional Food 5:67−81

[54]

Kajimoto O. 2004. Hypotensive effect and safety of the granular foods containing oligo peptides derived from nori (Porphya yezoensis) in subjects with high-normal blood pressure. Journal of Nutritional Food 7:43−58

[55]

Saito T. 2012. Blood pressure lowering peptide. In Functional Amino Acid & Functional Peptides - Technology & Marketing, ed. Kato H, Murakami T, Yamada T, Yokokoshi H, Nishimura A, et al. Tokyo, Japan: CMC Publishing Co. pp. 73-87

[56]

Pripp AH, Isaksson T, Stepaniak L, Sørhaug T. 2004. Quantitative structure-activity relationship modelling of ACE-inhibitory peptides derived from milk proteins. European Food Research and Technology 219:579−83

doi: 10.1007/s00217-004-1004-4
[57]

Wu J, Aluko RE, Nakai S. 2006. Structural requirements of angiotensin I-converting enzyme inhibitory peptides: Quantitative structure−activity relationship study of di- and tripeptides. Journal of Agricultural and Food Chemistry 54:732−38

doi: 10.1021/jf051263l
[58]

Pihlanto-Leppälä A, Koskinen P, Piilola K, Tupasela T, Korhonen H. 2000. Angiotensin I-converting enzyme inhibitory properties of whey protein digests: concentration and characterization of active peptides. Journal of Dairy Research 67:53−64

doi: 10.1017/S0022029999003982
[59]

Mullally MM, Meisel H, FitzGerald RJ. 1997. Identification of a novel angiotensin-I-converting enzyme inhibitory peptide corresponding to a tryptic fragment of bovine β-lactoglobulin. FEBS Letters 402:99−101

doi: 10.1016/S0014-5793(96)01503-7
[60]

Mendis E, Rajapakse N, Byun HG, Kim SK. 2005. Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects. Life Sciences 77:2166−78

doi: 10.1016/j.lfs.2005.03.016
[61]

Shahidi F, Zhong HJ, Ambigaipalan P. 2020. Antioxidants: Regulatory Status. In Bailey's Industrial Oil and Fat Products, ed. Shahidi F. Hoboken, New Jersey, USA: John Wiley & Sons. pp. 1−21. https://doi.org/10.1002/047167849X.bio035.pub2

[62]

Cornish ML, Garbary DJ. 2010. Antioxidants from macroalgae: potential applications in human health and nutrition. ALGAE 25:155−71

doi: 10.4490/algae.2010.25.4.155
[63]

Erdmann K, Grosser N, Schipporeit K, Schröder H. 2006. The ACE inhibitory dipeptide Met-Tyr diminishes free radical formation in human endothelial cells via induction of heme oxygenase-1 and ferritin. The Journal of Nutrition 136:2148−52

doi: 10.1093/jn/136.8.2148
[64]

Mendis E, Rajapakse N, Kim SK. 2005. Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate. Journal of Agricultural and Food Chemistry 53:581−87

doi: 10.1021/jf048877v
[65]

Rajapakse N, Mendis E, Byun HG, Kim SK. 2005. Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems. The Journal of Nutritional Biochemistry 16:562−69

doi: 10.1016/j.jnutbio.2005.02.005
[66]

Rajapakse N, Mendis E, Jung WK, Je JY, Kim SK. 2005. Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties. Food Research International 38:175−82

doi: 10.1016/j.foodres.2004.10.002
[67]

Kim SK, Kim YT, Byun HG, Nam KS, Joo DS, et al. 2001. Isolation and characterization of antioxidative peptides from gelatin hydrolysate of Alaska pollack skin. Journal of Agricultural and Food Chemistry 49:1984−89

doi: 10.1021/jf000494j
[68]

Kim EK, Oh HJ, Kim YS, Hwang JW, Ahn CB, et al. 2013. Purification of a novel peptide derived from Mytilus coruscus and in vitro/in vivo evaluation of its bioactive properties. Fish & Shellfish Immunology 34:1078−84

doi: 10.1016/j.fsi.2013.01.013
[69]

Fernando IPS, Park SY, Han EJ, Kim HS, Kang DS, et al. 2020. Isolation of an antioxidant peptide from krill protein hydrolysates as a novel agent with potential hepatoprotective effects. Journal of Functional 67:103889

doi: 10.1016/j.jff.2020.103889
[70]

Bahar AA, Ren D. 2013. Antimicrobial Peptides. Pharmaceuticals 6:1543−75

doi: 10.3390/ph6121543
[71]

Stensvåg K, Haug T, Sperstad SV, Rekdal Ø, Indrevoll B, Styrvold OB. 2008. Arasin 1, a proline–arginine-rich antimicrobial peptide isolated from the spider crab, Hyas araneus. Developmental and Comparative Immunology 32:275−85

doi: 10.1016/j.dci.2007.06.002
[72]

Battison AL, Summerfield R, Patrzykat A. 2008. Isolation and characterisation of two antimicrobial peptides from haemocytes of the American lobster Homarus americanus. Fish & Shellfish Immunology 25:181−87

doi: 10.1016/j.fsi.2008.04.005
[73]

Falco A, Chico V, Marroquí L, Perez L, Coll JM, et al. 2008. Expression and antiviral activity of a β-defensin-like peptide identified in the rainbow trout (Oncorhynchus mykiss) EST sequences. Molecular Immunology 45:757−65

doi: 10.1016/j.molimm.2007.06.358
[74]

Ullal AJ, Wayne Litaker R, Noga EJ. 2008. Antimicrobial peptides derived from hemoglobin are expressed in epithelium of channel catfish (Ictalurus punctatus, Rafinesque). Developmental and Comparative Immunology 32:1301−12

doi: 10.1016/j.dci.2008.04.005
[75]

Su Y. 2011. Isolation and identification of pelteobagrin, a novel antimicrobial peptide from the skin mucus of yellow catfish (Pelteobagrus fulvidraco). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 158:149−54

doi: 10.1016/j.cbpb.2010.11.002
[76]

Liang Y, Guan R, Huang W, Xu T. 2011. Isolation and identification of a novel inducible antibacterial peptide from the skin mucus of Japanese Eel, Anguilla japonica. The Protein Journal 30:413

doi: 10.1007/s10930-011-9346-9
[77]

Alves AL, Marques ALP, Martins E, Silva TH, Reis RL. 2017. Cosmetic potential of marine fish skin collagen. Cosmetics 4:39

doi: 10.3390/cosmetics4040039
[78]

Chen CL, Liou SF, Chen SJ, Shih MF. 2011. Protective effects of Chlorella-derived peptide on UVB-induced production of MMP-1 and degradation of procollagen genes in human skin fibroblasts. Regulatory Toxicology and Pharmacology 60:112−19

doi: 10.1016/j.yrtph.2011.03.001
[79]

Han J, Huang Z, Tang S, Lu C, Wan H, et al. 2020. The novel peptides ICRD and LCGEC screened from tuna roe show antioxidative activity via Keap1/Nrf2-ARE pathway regulation and gut microbiota modulation. Food Chemistry 327:127094

doi: 10.1016/j.foodchem.2020.127094
[80]

Hu ZZ, Ma TX, Sha XM, Zhang L, Tu ZC. 2022. Improving tyrosinase inhibitory activity of grass carp fish scale gelatin hydrolysate by gastrointestinal digestion: Purification, identification and action mechanism. LWT 159:113205

doi: 10.1016/j.lwt.2022.113205
[81]

Pal P, Srivas PK, Dadhich P, Das B, Maity PP, et al. 2016. Accelerating full thickness wound healing using collagen sponge of mrigal fish (Cirrhinus cirrhosus) scale origin. International Journal of Biological Macromolecules 93:1507−18

doi: 10.1016/j.ijbiomac.2016.04.032
[82]

de Miranda RB, Weimer P, Rossi RC. 2021. Effects of hydrolyzed collagen supplementation on skin aging: a systematic review and meta-analysis. International Journal of Dermatology 60:1449−61

doi: 10.1111/ijd.15518
[83]

Lima Júnior EM, De Moraes Filho MO, Costa BA, Rohleder AVP, Sales Rocha MB, et al. 2020. Innovative Burn Treatment Using Tilapia Skin as a Xenograft: A Phase II Randomized Controlled Trial. Journal of Burn Care & Research 41:585−92

doi: 10.1093/jbcr/irz205
[84]

Lau CS, Hassanbhai A, Wen F, Wang D, Chanchareonsook N, et al. 2019. Evaluation of decellularized tilapia skin as a tissue engineering scaffold. Journal of Tissue Engineering and Regenerative Medicine 13:1779−91

doi: 10.1002/term.2928
[85]

Zhou T, Wang N, Xue Y, Ding T, Liu X, et al. 2015. Development of Biomimetic Tilapia Collagen Nanofibers for Skin Regeneration through Inducing Keratinocytes Differentiation and Collagen Synthesis of Dermal Fibroblasts. ACS Applied Materials & Interfaces 7:3253−62

doi: 10.1021/am507990m
[86]

Feng X, Zhang X, Li S, Zheng Y, Shi X, et al. 2020. Preparation of aminated fish scale collagen and oxidized sodium alginate hybrid hydrogel for enhanced full-thickness wound healing. International Journal of Biological Macromolecules 164:626−37

doi: 10.1016/j.ijbiomac.2020.07.058
[87]

Cudennec B, Ravallec-Plé R, Courois E, Fouchereau-Peron M. 2008. Peptides from fish and crustacean by-products hydrolysates stimulate cholecystokinin release in STC-1 cells. Food Chemistry 111:970−75

doi: 10.1016/j.foodchem.2008.05.016
[88]

Suetsuna K, Saito M. 2001. Enzyme-decomposed materials of laver and uses thereof. Google Patents. United States.

[89]

Ahn CB, Je JY. 2019. Bone health-promoting bioactive peptides. Journal of Food Biochemistry 43:e12529

doi: 10.1111/jfbc.12529
[90]

Nguyen MHT, Qian ZJ, Nguyen VT, Choi IW, Heo SJ, et al. 2013. Tetrameric peptide purified from hydrolysates of biodiesel byproducts of Nannochloropsis oculata induces osteoblastic differentiation through MAPK and Smad pathway on MG-63 and D1 cells. Process Biochemistry 48:1387−94

doi: 10.1016/j.procbio.2013.06.031
[91]

Oh Y, Ahn CB, Je JY. 2020. Blue mussel-derived peptides PIISVYWK and FSVVPSPK trigger Wnt/β-catenin signaling-mediated osteogenesis in human bone marrow mesenchymal stem cells. Marine Drugs 18:510

doi: 10.3390/md18100510
[92]

Oh Y, Ahn CB, Je JY. 2020. Ark shell protein-derived bioactive peptides promote osteoblastic differentiation through upregulation of the canonical Wnt/β-catenin signaling in human bone marrow-derived mesenchymal stem cells. Journal of Food Biochemistry 44:e13440

[93]

Heo SY, Ko SC, Nam SY, Oh J, Kim YM, et al. 2018. Fish bone peptide promotes osteogenic differentiation of MC3T3-E1 pre-osteoblasts through upregulation of MAPKs and Smad pathways activated BMP-2 receptor. Cell Biochemistry and Function 36:137−46

doi: 10.1002/cbf.3325
[94]

Kim GH, Jeon YJ, Byun HG, Lee YS, Lee EH, et al. 1998. Effect of calcium compounds from oyster shell bouind fish skin gelatin peptide in calcium deficient rats. Korean Journal of Fisheries and Aquatic Sciences 31:149−59

[95]

Jung WK, Karawita R, Heo SJ, Lee BJ, Kim SK, et al. 2006. Recovery of a novel Ca-binding peptide from Alaska Pollack (Theragra chalcogramma) backbone by pepsinolytic hydrolysis. Process Biochemistry 41:2097−100

doi: 10.1016/j.procbio.2006.05.008
[96]

Jung WK, Kim SK. 2007. Calcium-binding peptide derived from pepsinolytic hydrolysates of hoki (Johnius belengerii) frame. European Food Research and Technology 224:763−67

doi: 10.1007/s00217-006-0371-4
[97]

Rajapakse N, Jung WK, Mendis E, Moon SH, Kim SK. 2005. A novel anticoagulant purified from fish protein hydrolysate inhibits factor XIIa and platelet aggregation. Life Sciences 76:2607−19

doi: 10.1016/j.lfs.2004.12.010
[98]

Jung WK, Je JY, Kim HJ, Kim SK. 2002. A novel anticoagulant protein from Scapharca broughtonii. BMB Reports 35:199−205

doi: 10.5483/BMBRep.2002.35.2.199
[99]

Wang YK, He HL, Wang GF, Wu H, Zhou BC, et al. 2010. Oyster (Crassostrea gigas) hydrolysates produced on a plant scale have antitumor activity and immunostimulating effects in BALB/c mice. Marine Drugs 8:255−68

doi: 10.3390/md8020255
[100]

Alemán A, Pérez-Santín E, Bordenave-Juchereau S, Arnaudin I, Gómez-Guillén MC, et al. 2011. Squid gelatin hydrolysates with antihypertensive, anticancer and antioxidant activity. Food Research International 44:1044−51

doi: 10.1016/j.foodres.2011.03.010
[101]

Hsu KC, Li-Chan ECY, Jao CL. 2011. Antiproliferative activity of peptides prepared from enzymatic hydrolysates of tuna dark muscle on human breast cancer cell line MCF-7. Food Chemistry 126:617−22

doi: 10.1016/j.foodchem.2010.11.066
[102]

Pan X, Zhao YQ, Hu FY, Chi CF, Wang B. 2016. Anticancer Activity of a Hexapeptide from Skate (Raja porosa) Cartilage Protein Hydrolysate in HeLa Cells. Marine Drugs 14:153

doi: 10.3390/md14080153
[103]

Su BC, Pan CY, Chen JY. 2019. Antimicrobial peptide TP4 induces ROS-mediated necrosis by triggering mitochondrial dysfunction in wild-type and mutant p53 glioblastoma cells. Cancers 11:171

doi: 10.3390/cancers11020171
[104]

Ting CH, Chen JY. 2018. Nile Tilapia derived TP4 shows broad cytotoxicity toward to non-small-cell lung cancer cells. Marine Drugs 16:506

doi: 10.3390/md16120506
[105]

Bernet F, Montel V, Noël B, Dupouy JP. 2000. Diazepam-like effects of a fish protein hydrolysate (Gabolysat PC60) on stress responsiveness of the rat pituitary-adrenal system and sympathoadrenal activity. Psychopharmacology 149:34−40

doi: 10.1007/s002139900338
[106]

Pangestuti R, Ryu B, Himaya SWA, Kim SK. 2013. Optimization of hydrolysis conditions, isolation, and identification of neuroprotective peptides derived from seahorse Hippocampus trimaculatus. Amino Acids 45:369−81

doi: 10.1007/s00726-013-1510-4
[107]

Ma R, Chen Q, Dai Y, Huang Y, Hou Q, et al. 2022. Identification of novel antioxidant peptides from sea squirt (Halocynthia roretzi) and its neuroprotective effect in 6-OHDA-induced neurotoxicity. Food Function 13:6008−21

doi: 10.1039/D2FO00729K
[108]

Fernando IPS, Ryu B, Ahn G, Yeo IK, Jeon YJ. 2020. Therapeutic potential of algal natural products against metabolic syndrome: A review of recent developments. Trends in Food Science & Technology 97:286−99

doi: 10.1016/j.jpgs.2020.01.020
[109]

Hu S, Fan X, Qi P, Zhang X. 2019. Identification of anti-diabetes peptides from Spirulina platensis. Journal of Functional Foods 56:333−41

doi: 10.1016/j.jff.2019.03.024
[110]

Huang SL, Jao CL, Ho KP, Hsu KC. 2012. Dipeptidyl-peptidase IV inhibitory activity of peptides derived from tuna cooking juice hydrolysates. Peptides 35:114−21

doi: 10.1016/j.peptides.2012.03.006
[111]

Wang TY, Hsieh CH, Hung CC, Jao CL, Chen MC, et al. 2015. Fish skin gelatin hydrolysates as dipeptidyl peptidase IV inhibitors and glucagon-like peptide-1 stimulators improve glycaemic control in diabetic rats: A comparison between warm- and cold-water fish. Journal of Functional Foods 19:330−40

doi: 10.1016/j.jff.2015.09.037
[112]

Zhu C-F, Peng H-B, Liu G-Q, Zhang F, Li Y. 2010. Beneficial effects of oligopeptides from marine salmon skin in a rat model of type 2 diabetes. Nutrition 26:1014−20

doi: 10.1016/j.nut.2010.01.011
[113]

Zhu CF, Li GZ, Peng HB, Zhang F, Chen Y, et al. 2010. Treatment with marine collagen peptides modulates glucose and lipid metabolism in Chinese patients with type 2 diabetes mellitus. Applied Physiology, Nutrition, and Metabolism 35:797−804

doi: 10.1139/H10-075
[114]

Zhang N, Xu B, Mou C, Yang W, Wei J, et al. 2003. Molecular profile of the unique species of traditional Chinese medicine, Chinese seahorse (Hippocampus kuda Bleeker). FEBS Letters 550:124−34

doi: 10.1016/S0014-5793(03)00855-X
[115]

Kim KS, Bae WJ, Kim SJ, Kang KH, Kim SK, et al. 2016. Improvement of erectile dysfunction by the active pepide from Urechis unicinctus by high temperature/pressure and ultra-wave assisted lysis in Streptozotocin Induced Diabetic Rats. International Brazilian Journal of Urology 42:825−37

doi: 10.1590/S1677-5538.IBJU.2015.0606
[116]

Jin Q, Shi W, Wang Y, Li S, Xue C, et al. 2021. Oyster peptide prevents the occurrence of exercise-hypogonadal male condition by improving the function of pituitary gonadal axis in male rats. Andrologia 53:e14005

doi: 10.1111/and.14005
[117]

Li M, Zhou M, Wei Y, Jia F, Yan Y, et al. 2020. The beneficial effect of oyster peptides and oyster powder on cyclophosphamide-induced reproductive impairment in male rats: A comparative study. Journal of Food Biochemistry 44:e13468

doi: 10.1111/jfbc.13468
[118]

Sudirman S, Su CY, Tsou D, Lee MC, Kong ZL. 2021. Hippocampus kuda protein hydrolysate improves male reproductive dysfunction in diabetic rats. Biomedicine & Pharmacotherapy 140:111760

doi: 10.1016/j.biopha.2021.111760
[119]

Hartmann R, Meisel H. 2007. Food-derived peptides with biological activity: from research to food applications. Current Opinion in Biotechnology 18:163−69

doi: 10.1016/j.copbio.2007.01.013
[120]

Cappello E, Nieri P. 2021. From Life in the Sea to the Clinic: The marine drugs approved and under clinical trial. Life 11:1390

doi: 10.3390/life11121390
[121]

Biondini M, Kiepas A, El-Houjeiri L, Annis MG, Hsu BE, et al. 2022. HSP90 inhibitors induce GPNMB cell-surface expression by modulating lysosomal positioning and sensitize breast cancer cells to glembatumumab vedotin. Oncogene 41:1701−17

doi: 10.1038/s41388-022-02206-z
[122]

Martins A, Vieira H, Gaspar H, Santos S. 2014. Marketed Marine Natural Products in the Pharmaceutical and Cosmeceutical Industries: Tips for Success. Marine Drugs 12:1066−101

doi: 10.3390/md12021066
[123]

Draaisma RB, Wijffels RH, Slegers PME, Brentner LB, Roy A, et al. 2013. Food commodities from microalgae. Current Opinion in Biotechnology 24:169−77

doi: 10.1016/j.copbio.2012.09.012
[124]

Pan CY, Chen JY, Lin TL, Lin CH. 2009. In vitro activities of three synthetic peptides derived from epinecidin-1 and an anti-lipopolysaccharide factor against Propionibacterium acnes, Candida albicans, and Trichomonas vaginalis. Peptides 30:1058−68

doi: 10.1016/j.peptides.2009.02.006
[125]

Wu J, Ding X. 2002. Characterization of inhibition and stability of soy-protein-derived angiotensin I-converting enzyme inhibitory peptides. Food Research International 35:367−75

doi: 10.1016/S0963-9969(01)00131-4
[126]

Fernando IPS, Kirindage KGIS, Jeon HN, Han EJ, Jayasinghe AMK, et al. 2022. Preparation of microspheres by alginate purified from Sargassum horneri and study of pH-responsive behavior and drug release. Int. J. Biol. Macromol. 202:681−90

doi: 10.1016/j.ijbiomac.2022.01.171