[1] |
Turchi B, Pedonese F, Torracca B, Fratini F, Mancini S, et al. 2017. Lactobacillus plantarum and Streptococcus thermophilus as starter cultures for a donkey milk fermented beverage. International Journal of Food Microbiology 256:54−61 doi: 10.1016/j.ijfoodmicro.2017.05.022 |
[2] |
Luo J, Jian S, Wang P, Ren F, Wang F, et al. 2019. Thermal instability and characteristics of donkey casein micelles. Food Research International 119:436−43 doi: 10.1016/j.foodres.2019.02.023 |
[3] |
Cosentino C, Faraone D, Paolino R, Freschi P, Musto M. 2016. Short communication: Sensory profile and acceptability of a cow milk cheese manufactured by adding jenny milk. Journal of Dairy Science 99:228−33 doi: 10.3168/jds.2015-10107 |
[4] |
Adduci F, Elshafie HS, Labella C, Musto M, Freschi P, et al. 2019. Abatement of the clostridial load in the teats of lactating cows with lysozyme derived from donkey milk. Journal of Dairy Science 102:6750−55 doi: 10.3168/jds.2019-16311 |
[5] |
Giacometti F, Bardasi L, Merialdi G, Morbarigazzi M, Federici S, et al. 2016. Shelf life of donkey milk subjected to different treatment and storage conditions. Journal of Dairy Science 99:4291−99 doi: 10.3168/jds.2015-10741 |
[6] |
Pitino MA, Unger S, Doyen A, Pouliot Y, Aufreiter S, et al. 2019. High hydrostatic pressure processing better preserves the nutrient and bioactive compound composition of human donor milk. The Journal of Nutrition 149:497−504 doi: 10.1093/jn/nxy302 |
[7] |
Gopal N, Hill C, Ross PR, Beresford TP, Fenelon MA, Cotter PD. 2015. The prevalence and control of Bacillus and related spore-forming bacteria in the dairy industry. Frontiers in Microbiology 6:1418 doi: 10.3389/fmicb.2015.01418 |
[8] |
Chawla R, Patil GR, Singh AK. 2011. High hydrostatic pressure technology in dairy processing: a review. Journal of Food Science and Technology 48:260−68 doi: 10.1007/s13197-010-0180-4 |
[9] |
Altuner EM, Alpas H, Erdem YK, Bozoglu F. 2006. Effect of high hydrostatic pressure on physicochemical and biochemical properties of milk. European Food Research and Technology 222:392−96 doi: 10.1007/s00217-005-0072-4 |
[10] |
Tabla R, Martínez B, Rebollo JE, González J, Ramírez MR, et al. 2012. Bacteriophage performance against Staphylococcus aureus in milk is improved by high hydrostatic pressure treatments. International Journal of Food Microbiology 156:209−13 doi: 10.1016/j.ijfoodmicro.2012.03.023 |
[11] |
Dussault N, Cayer MP, Landry P, de Grandmont MJ, Cloutier M, et al. 2021. Comparison of the effect of holder pasteurization and high-pressure processing on human milk bacterial load and bioactive factors preservation. Journal of Pediatric Gastroenterology and Nutrition 72:756−62 doi: 10.1097/MPG.0000000000003065 |
[12] |
Felipe X, Capellas M, Law AJR. 1997. Comparison of the effects of high-pressure treatments and heat pasteurization on the whey proteins in goat's milk. Journal of Agricultural and Food Chemistry 45:627−31 doi: 10.1021/jf960406o |
[13] |
Papademas P, Mousikos P, Aspri M. 2022. Valorization of donkey milk: Technology, functionality, and future prospects. JDS Communications 3:228−33 doi: 10.3168/jdsc.2021-0175 |
[14] |
Russo P, Fiocco D, Albenzio M, Spano G, Capozzi V. 2020. Microbial populations of fresh and cold stored donkey milk by high-throughput sequencing provide indication for a correct management of this high-value product. Applied Sciences 10:2314 doi: 10.3390/app10072314 |
[15] |
Papademas P, Kamilari E, Aspri M, Anagnostopoulos DA, Mousikos P, et al. 2021. Investigation of donkey milk bacterial diversity by 16S rDNA high-throughput sequencing on a Cyprus donkey farm. Journal of Dairy Science 104:167−78 doi: 10.3168/jds.2020-19242 |
[16] |
Luoyizha W, Wu X, Zhang M, Guo X, Li H, et al. 2020. Compared analysis of microbial diversity in donkey milk from Xinjiang and Shandong of China through High-throughput sequencing. Food Research International 137:109684 doi: 10.1016/j.foodres.2020.109684 |
[17] |
Murua A, Todorov SD, Vieira AD, Martinez RCR, Cencič A, et al. 2013. Isolation and identification of bacteriocinogenic strain of Lactobacillus plantarum with potential beneficial properties from donkey milk. Journal of Applied Microbiology 114:1793−809 doi: 10.1111/jam.12190 |
[18] |
Carminati D, Tidona F, Fornasari ME, Rossetti L, Meucci A, Giraffa G. 2014. Biotyping of cultivable lactic acid bacteria isolated from donkey milk. Letters in Applied Microbiology 59:299−305 doi: 10.1111/lam.12275 |
[19] |
Kathade SA, Aswani MA, Anand PK, Jagtap S, Bipinraj NK. 2020. Isolation of Lactobacillus from donkey dung and its probiotic characterization. Korean Journal of Microbiology 56:160−69 doi: 10.7845/kjm.2020.0038 |
[20] |
Yang B, Shi Y, Xia X, Xi M, Wang X, et al. 2012. Inactivation of foodborne pathogens in raw milk using high hydrostatic pressure. Food control v. 28:273−78 doi: 10.1016/j.foodcont.2012.04.030 |
[21] |
Tan SF, Chin NL, Tee TP, Chooi SK. 2020. Physico-chemical changes, microbiological properties, and storage shelf life of cow and goat milk from industrial high-pressure processing. Processes 8:697 doi: 10.3390/pr8060697 |
[22] |
Quigley L, O'Sullivan O, Beresford TP, Paul Ross R, Fitzgerald GF, et al. 2012. A comparison of methods used to extract bacterial DNA from raw milk and raw milk cheese. Journal of applied microbiology 113:96−105 doi: 10.1111/j.1365-2672.2012.05294.x |
[23] |
Kresse SH, Namløs HM, Lorenz S, Berner JM, Myklebost O, et al. 2018. Evaluation of commercial DNA and RNA extraction methods for high-throughput sequencing of FFPE samples. PLoS One 13:e0197456 doi: 10.1371/journal.pone.0197456 |
[24] |
Bagad M, Pande R, Ghosh AR. 2012. Determination of viability of pediococcus spp. gs4 after storage into hard gelatin capsule and its survival under in vitro simulated gastrointestinal condition Bagad. International Journal of Research in Ayurveda and Pharmacy 3:233−37 |
[25] |
Li H, Garcia-Hernandez R, Driedger D, McMullen LM, Gänzle M. 2016. Effect of the food matrix on pressure resistance of Shiga-toxin producing Escherichia coli. Food Microbiology 57:96−102 doi: 10.1016/j.fm.2016.02.002 |
[26] |
Xiao L, Chen B, Feng D, Yang T, Li T, Chen J. 2019. TLR4 may be involved in the regulation of colonic mucosal microbiota by vitamin A. Frontiers in Microbiology 10:268 doi: 10.3389/fmicb.2019.00268 |
[27] |
Al-Bahry SN, Elshafie AE, Al-Wahaibi YM, Al-Bemani AS, Joshi SJ, et al. 2013. Isolation and characterization of biosurfactant/biopolymer producing spore forming bacteria from oil contaminated sites and oil field of oman. APCBEE Procedia 5:242−46 doi: 10.1016/j.apcbee.2013.05.042 |
[28] |
Kioroglou D, Mas A, Portillo MC. 2020. High-throughput sequencing approach to analyze the effect of aging time and barrel usage on the microbial community composition of red wines. Frontiers in Microbiology 11:562560 doi: 10.3389/fmicb.2020.562560 |
[29] |
Brooks ME, Epps HBG. 1959. Taxonomic studies of the genus Clostridium: Clostrididum bifermentans and C. sordellii. Journal of General Microbiology 21:144−55 doi: 10.1099/00221287-21-1-144 |
[30] |
Kamilari E, Anagnostopoulos DA, Papademas P, Efthymiou M, Tretiak S, et al. 2020. Snapshot of cyprus raw goat milk bacterial diversity via 16S rDNA high-throughput sequencing; Impact of cold storage conditions. Fermentation 6:100 doi: 10.3390/fermentation6040100 |
[31] |
Zhang F, Wang Z, Lei F, Wang B, Jiang S, et al. 2017. Bacterial diversity in goat milk from the Guanzhong area of China. Journal of Dairy Science 100:7812−24 doi: 10.3168/jds.2017-13244 |
[32] |
Rahmeh R, Akbar A, Alomirah H, Kishk M, Al-Ateeqi A, et al. 2022. Camel milk microbiota: A culture-independent assessment. Food Research International 159:111629 doi: 10.1016/j.foodres.2022.111629 |
[33] |
Esteban-Blanco C, Gutiérrez-Gil B, Puente-Sánchez F, Marina H, Tamames J, et al. 2020. Microbiota characterization of sheep milk and its association with somatic cell count using 16s rRNA gene sequencing. Journal of Animal Breeding and Genetics 137:73−83 doi: 10.1111/jbg.12446 |
[34] |
Li L, Renye Jr JA, Feng L, Zeng Q, Tang Y, et al. 2016. Characterization of the indigenous microflora in raw and pasteurized buffalo milk during storage at refrigeration temperature by high-throughput sequencing. Journal of Dairy Science 99:7016−24 doi: 10.3168/jds.2016-11041 |
[35] |
Porcellato D, Aspholm M, Skeie SB, Monshaugen M, Brendehaug J, Mellegård H. 2018. Microbial diversity of consumption milk during processing and storage. International Journal of Food Microbiology 266:21−30 doi: 10.1016/j.ijfoodmicro.2017.11.004 |
[36] |
Rajawardana DU, Fernando PC, Biggs PJ, Hewajulige IGN, Nanayakkara CM, et al. 2022. An insight into tropical milk microbiome: Bacterial community composition of cattle milk produced in Sri Lanka. International Dairy Journal 126:105266 doi: 10.1016/j.idairyj.2021.105266 |
[37] |
Ragland SA, Criss AK. 2017. From bacterial killing to immune modulation: Recent insights into the functions of lysozyme. PLoS Pathogens 13:e1006512 doi: 10.1371/journal.ppat.1006512 |
[38] |
Masschalck B, Van Houdt R, Van Haver EGR, Michiels CW. 2001. Inactivation of gram-negative bacteria by lysozyme, denatured lysozyme, and lysozyme-derived peptides under high hydrostatic pressure. Applied and Environmental Microbiology 67:339−44 doi: 10.1128/AEM.67.1.339-344.2001 |
[39] |
Buffa M, Guamis B, Royo C, Trujillo AJ. 2001. Microbiological changes throughout ripening of goat cheese made from raw, pasteurized and high-pressure-treated milk. Food Microbiology 18:45−51 doi: 10.1006/fmic.2000.0372 |
[40] |
Yu H, Bian Z, Mu S, Yuan J, Chen F. 2020. Effects of climate change on land cover change and vegetation dynamics in Xinjiang, China. International Journal of Environmental Research and Public Health 17:4865 doi: 10.3390/ijerph17134865 |
[41] |
Luoyizha W, Zeng B, Li H, Liao X. 2021. A preliminary study of proteomic analysis on caseins and whey proteins in donkey milk from Xinjiang and Shandong of China. eFood 2:27−36 doi: 10.2991/efood.k.210222.001 |
[42] |
de Oliveira GB, Favarin L, Luchese RH, McIntosh D. 2015. Psychrotrophic bacteria in milk: How much do we really know? Brazilian Journal of Microbiology 46:313−21 doi: 10.1590/s1517-838246220130963 |
[43] |
Craig K, Johnson BR, Grunden A. 2021. Leveraging Pseudomonas stress response mechanisms for industrial applications. Frontiers in Microbiology 12:660134 doi: 10.3389/fmicb.2021.660134 |
[44] |
Keto-Timonen R, Hietala N, Palonen E, Hakakorpi A, Lindström M, et al. 2016. Cold shock proteins: A minireview with special emphasis on Csp-family of Enteropathogenic Yersinia. Frontiers in microbiology 7:1151 doi: 10.3389/fmicb.2016.01151 |
[45] |
Deshwal VK, Chaubey A. 2014. Isolation and Characterization of Rhizobium leguminosarum from Root nodule of Pisum sativum L. Journal of Academia and Industrial Research 2:464−67 |
[46] |
Franz CM, Holzapfel WH, Stiles ME. 1999. Enterococci at the crossroads of food safety? International Journal of Food Microbiology 47:1−24 doi: 10.1016/s0168-1605(99)00007-0 |
[47] |
Suzzi G, Caruso M, Gardini F, Lombardi A, Vannini L, et al. 2000. A survey of the enterococci isolated from an artisanal Italian goat's cheese (semicotto caprino). Journal of Applied Microbiology 89:267−74 doi: 10.1046/j.1365-2672.2000.01120.x |
[48] |
Serio A, Chaves-López C, Paparella A, Suzzi G. 2010. Evaluation of metabolic activities of enterococci isolated from Pecorino Abruzzese cheese. International Dairy Journal 20:459−64 doi: 10.1016/j.idairyj.2010.02.005 |
[49] |
Wuytack EY, Diels AMJ, Michiels CW. 2002. Bacterial inactivation by high-pressure homogenisation and high hydrostatic pressure. International Journal of Food Microbiology 77:205−12 doi: 10.1016/S0168-1605(02)00054-5 |
[50] |
Ramaswamy HS, Jin H, Zhu S. 2009. Effects of fat, casein and lactose on high-pressure destruction of Escherichia coli K12 (ATCC-29055) in milk. Food and Bioproducts Processing 87:1−6 doi: 10.1016/j.fbp.2008.02.005 |
[51] |
Podolak R, Whitman D, Black DG. 2020. Factors affecting microbial inactivation during high pressure processing in juices and beverages: A review. Journal of Food Protection 83:1561−75 doi: 10.4315/JFP-20-096 |
[52] |
Raposo A, Pérez E, Faria C, Ferrús MA, Carrascosa C. 2017. Food Spoilage by Pseudomonas spp. — An Overview. In Foodborne Pathogens and Antibiotic Resistance, ed. Singh OV. Hoboken, New Jerse: John Wiley & Sons. pp. 41−71. https://doi.org/10.1002/9781119139188.ch3 |
[53] |
Remold SK, Brown CK, Farris JE, Hundley TC, Perpich JA, et al. 2011. Differential habitat use and niche partitioning by Pseudomonas species in human homes. Microbial Ecology 62:505−17 doi: 10.1007/s00248-011-9844-5 |
[54] |
Vila J, Martí S, Sánchez-Céspedes J. 2007. Porins, efflux pumps and multidrug resistance in Acinetobacter baumannii. The Journal of Antimicrobial Chemotherapy 59:1210−5 doi: 10.1093/jac/dkl509 |
[55] |
Lazaretti WY, dos Santos EL, da-Conceição Silva JL, Kadowaki MK, Gandra RF, et al. 2019. Upregulation of the clpB gene in response to heat shock and beta-lactam antibiotics in Acinetobacter baumannii. Molecular Biology Reports 47:1499−505 doi: 10.1007/s11033-019-05209-4 |
[56] |
Gurung M, Nam HM, Tamang MD, Chae MH, Jang GC, et al. 2013. Prevalence and antimicrobial susceptibility of Acinetobacter from raw bulk tank milk in Korea. Journal of Dairy Science 96:1997−2002 doi: 10.3168/jds.2012-5965 |
[57] |
Mercer RG, Zheng J, Garcia-Hernandez R, Ruan L, Gänzle MG, McMullen LM. 2015. Genetic determinants of heat resistance in Escherichia coli. Frontiers in Microbiology 6:932 doi: 10.3389/fmicb.2015.00932 |
[58] |
Li H, Mercer R, Behr J, Heinzlmeir S, McMullen LM, et al. 2020. Heat and pressure resistance in Escherichia coli relates to protein folding and aggregation. Frontiers in microbiology 11:111 doi: 10.3389/fmicb.2020.00111 |
[59] |
McInnes RS, McCallum GE, Lamberte LE, van Schaik W. 2020. Horizontal transfer of antibiotic resistance genes in the human gut microbiome. Current Opinion in Microbiology 53:35−43 doi: 10.1016/j.mib.2020.02.002 |