[1]

Jeffrey C. 1980. A review of the Cucurbitaceae. Botanical Journal of the Linnean Society 81:233−47

doi: 10.1111/j.1095-8339.1980.tb01676.x
[2]

Kirkbride JH, Jr. 1993. Biosystematic monograph of the genus Cucumis (Cucurbitaceae): botanical identification of cucumbers and melons. pp x + pp159. New York: Parkway Publishers. pp 1−12.

[3]

Qi J, Liu X, Shen D, Miao H, Xie B, et al. 2013. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nature Genetics 45:1510−15

doi: 10.1038/ng.2801
[4]

Qi C, Yuan Z, Li Y. 1983. A new type of cucumber - Cucumis sativus L. var. xishuangbannanesis. Acta Horticulturae Sinica 10:259−63

[5]

Lai Y, Zhang X, Zhang W, Shen D, Wang H, et al. 2017. The association of changes in DNA methylation with temperature-dependent sex determination in cucumber. Journal Experimental Botany 68:2899−912

doi: 10.1093/jxb/erx144
[6]

Lai Y, Shen D, Zhang W, Zhang X, Qiu Y, et al. 2018. Temperature and photoperiod changes affect cucumber sex expression by different epigenetic regulations. BMC Plant Biology 18:268

doi: 10.1186/s12870-018-1490-3
[7]

Li H, Wang S, Chai S, Yang Z, Zhang Q, et al. 2022. Graph-based pan-genome reveals structural and sequence variations related to agronomic traits and domestication in cucumber. Nature Communications 13:682

doi: 10.1038/s41467-022-28362-0
[8]

Pan Y, Qu S, Bo K, Gao M, Haider KR, et al. 2017. QTL mapping of domestication and diversifying selection related traits in round-fruited semi-wild Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis). Theoretical and Applied Genetics 130:1531−48

doi: 10.1007/s00122-017-2908-2
[9]

Bo K, Ma Z, Chen J, Weng Y. 2015. Molecular mapping reveals structural rearrangements and quantitative trait loci underlying traits with local adaptation in semi-wild Xishuangbanna cucumber (Cucumis sativus Lvar. xishuangbannanesis Qi et Yuan). Theoretical and Applied Genetics 128:25−39

doi: 10.1007/s00122-014-2410-z
[10]

Turner A, Beales J, Faure S, Dunford RP, Laurie DA. 2005. The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031−34

doi: 10.1126/science.1117619
[11]

Weller JL, Vander Schoor JK, Perez-Wright EC, Hecht V, González AM, et al. 2019. Parallel origins of photoperiod adaptation following dual domestications of common bean. Journal Experimental Botany 70:1209−19

doi: 10.1093/jxb/ery455
[12]

Boden SA. 2021. Evolution: replicated mutation of COL2 contributed long-day flowering in common bean. Current biology 31:PR384−R398

doi: 10.1016/j.cub.2021.02.030
[13]

Xie D, Xu Y, Wang J, Liu W, Zhou Q, et al. 2019. The wax gourd genomes offer insights into the genetic diversity and ancestral cucurbit karyotype. Nature Communications 10:5158

doi: 10.1038/s41467-019-13185-3
[14]

Roux F, Touzet P, Cuguen J, Le Corre V. 2006. How to be early flowering: an evolutionary perspective. Trends in Plnat Science 11:375−81

doi: 10.1016/j.tplants.2006.06.006
[15]

Bo K, Chen L, Qian C, Zhang S, Chen J. 2010. Short-day treatments induce flowering of Xishuangbanna cucumber. China Cucurbits and Vegetables 23:1−3

doi: 10.3969/j.issn.1673-2871.2010.04.001
[16]

Shen D, Li X, Song J, Wang H, Qiu Y. 2011. Effects of different sowing dates on sex type and lateral stem development of Xishuangbanna cucubmer. China Vegetables22−7

[17]

Wang S, Li H, Li Y, Li Z, Qi J, et al. 2019. FLOWERING LOCUS T Improves Cucumber Adaptation to Higher Latitudes. Plant Physiology 182:908−18

[18]

Wang S, Li H, Li Y, Li Z, Qi J, et al. 2020. FLOWERING LOCUS T improves cucumber adaptation to higher latitudes. Plant Physiology 182:908−18

doi: 10.1104/pp.19.01215
[19]

Harmer SL. 2009. The circadian system in higher plants. Annual Review of Plant Biology 60:357−77

doi: 10.1146/annurev.arplant.043008.092054
[20]

Inoue K, Araki T, Endo M. 2018. Circadian clock during plant development. Journal of Plant Research 131:59−66

doi: 10.1007/s10265-017-0991-8
[21]

Song YH, Shim JS, Kinmonth-Schultz HA, Imaizumi T. 2015. Photoperiodic flowering: time measurement mechanisms in leaves. Annual Review of Plant Biology 66:441−64

doi: 10.1146/annurev-arplant-043014-115555
[22]

Shim JS, Imaizumi T. 2015. Circadian clock and photoperiodic response in Arabidopsis: from seasonal flowering to redox homeostasis. Biochemistry 54:157−70

doi: 10.1021/bi500922q
[23]

Johansson M, Staiger D. 2015. Time to flower: interplay between photoperiod and the circadian clock. Journal Experimental Botany 66:719−30

doi: 10.1093/jxb/eru441
[24]

Feinbaum RL, Ausubel FM. 1988. Transcriptional regulation of the Arabidopsis thaliana chalcone synthase gene. Molecular and Cellular Biology 8:1985−92

doi: 10.1128/mcb.8.5.1985-1992.1988
[25]

Ewing B, Hillier LD, Wendl MC, Green P. 1998. Base-Calling of automated sequencer traces using Phred. I. accuracy assessment. Genome Research 8:175−85

doi: 10.1101/gr.8.3.175
[26]

Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature methods 12:357−60

doi: 10.1038/nmeth.3317
[27]

Pertea M, Pertea MG, Antonescu CM, Chang TC, Mendell TJ, et al. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology 33:290−95

doi: 10.1038/nbt.3122
[28]

Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using DIAMOND. Nature Methods 12:59−60

doi: 10.1038/nmeth.3176
[29]

Brent E, Phil G. 1998. Base-Calling of Automated Sequencer Traces Using Phred. II. Error Probabilities. Genome Research 8:186−194

[30]

Wang L, Feng Z, Wang X, Wang X, Zhang X. 2010. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136−38

doi: 10.1093/bioinformatics/btp612
[31]

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25:2078−79

doi: 10.1093/bioinformatics/btp352
[32]

Kosugi S, Natsume S, Yoshida K, MacLean D, Cano L, et al. 2013. Coval: improving alignment quality and variant calling accuracy for next-generation sequencing data. PLoS ONE 8:e75402

doi: 10.1371/journal.pone.0075402
[33]

Meng L, Li H, Zhang L, Wang J. 2015. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal 3:269−83

doi: 10.1016/j.cj.2015.01.001