[1] |
Jeffrey C. 1980. A review of the Cucurbitaceae. Botanical Journal of the Linnean Society 81:233−47 doi: 10.1111/j.1095-8339.1980.tb01676.x |
[2] |
Kirkbride JH, Jr. 1993. Biosystematic monograph of the genus Cucumis (Cucurbitaceae): botanical identification of cucumbers and melons. pp x + pp159. New York: Parkway Publishers. pp 1−12. |
[3] |
Qi J, Liu X, Shen D, Miao H, Xie B, et al. 2013. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nature Genetics 45:1510−15 doi: 10.1038/ng.2801 |
[4] |
Qi C, Yuan Z, Li Y. 1983. A new type of cucumber - Cucumis sativus L. var. xishuangbannanesis. Acta Horticulturae Sinica 10:259−63 |
[5] |
Lai Y, Zhang X, Zhang W, Shen D, Wang H, et al. 2017. The association of changes in DNA methylation with temperature-dependent sex determination in cucumber. Journal Experimental Botany 68:2899−912 doi: 10.1093/jxb/erx144 |
[6] |
Lai Y, Shen D, Zhang W, Zhang X, Qiu Y, et al. 2018. Temperature and photoperiod changes affect cucumber sex expression by different epigenetic regulations. BMC Plant Biology 18:268 doi: 10.1186/s12870-018-1490-3 |
[7] |
Li H, Wang S, Chai S, Yang Z, Zhang Q, et al. 2022. Graph-based pan-genome reveals structural and sequence variations related to agronomic traits and domestication in cucumber. Nature Communications 13:682 doi: 10.1038/s41467-022-28362-0 |
[8] |
Pan Y, Qu S, Bo K, Gao M, Haider KR, et al. 2017. QTL mapping of domestication and diversifying selection related traits in round-fruited semi-wild Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis). Theoretical and Applied Genetics 130:1531−48 doi: 10.1007/s00122-017-2908-2 |
[9] |
Bo K, Ma Z, Chen J, Weng Y. 2015. Molecular mapping reveals structural rearrangements and quantitative trait loci underlying traits with local adaptation in semi-wild Xishuangbanna cucumber (Cucumis sativus Lvar. xishuangbannanesis Qi et Yuan). Theoretical and Applied Genetics 128:25−39 doi: 10.1007/s00122-014-2410-z |
[10] |
Turner A, Beales J, Faure S, Dunford RP, Laurie DA. 2005. The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031−34 doi: 10.1126/science.1117619 |
[11] |
Weller JL, Vander Schoor JK, Perez-Wright EC, Hecht V, González AM, et al. 2019. Parallel origins of photoperiod adaptation following dual domestications of common bean. Journal Experimental Botany 70:1209−19 doi: 10.1093/jxb/ery455 |
[12] |
Boden SA. 2021. Evolution: replicated mutation of COL2 contributed long-day flowering in common bean. Current biology 31:PR384−R398 doi: 10.1016/j.cub.2021.02.030 |
[13] |
Xie D, Xu Y, Wang J, Liu W, Zhou Q, et al. 2019. The wax gourd genomes offer insights into the genetic diversity and ancestral cucurbit karyotype. Nature Communications 10:5158 doi: 10.1038/s41467-019-13185-3 |
[14] |
Roux F, Touzet P, Cuguen J, Le Corre V. 2006. How to be early flowering: an evolutionary perspective. Trends in Plnat Science 11:375−81 doi: 10.1016/j.tplants.2006.06.006 |
[15] |
Bo K, Chen L, Qian C, Zhang S, Chen J. 2010. Short-day treatments induce flowering of Xishuangbanna cucumber. China Cucurbits and Vegetables 23:1−3 doi: 10.3969/j.issn.1673-2871.2010.04.001 |
[16] |
Shen D, Li X, Song J, Wang H, Qiu Y. 2011. Effects of different sowing dates on sex type and lateral stem development of Xishuangbanna cucubmer. China Vegetables22−7 |
[17] |
Wang S, Li H, Li Y, Li Z, Qi J, et al. 2019. FLOWERING LOCUS T Improves Cucumber Adaptation to Higher Latitudes. Plant Physiology 182:908−18 |
[18] |
Wang S, Li H, Li Y, Li Z, Qi J, et al. 2020. FLOWERING LOCUS T improves cucumber adaptation to higher latitudes. Plant Physiology 182:908−18 doi: 10.1104/pp.19.01215 |
[19] |
Harmer SL. 2009. The circadian system in higher plants. Annual Review of Plant Biology 60:357−77 doi: 10.1146/annurev.arplant.043008.092054 |
[20] |
Inoue K, Araki T, Endo M. 2018. Circadian clock during plant development. Journal of Plant Research 131:59−66 doi: 10.1007/s10265-017-0991-8 |
[21] |
Song YH, Shim JS, Kinmonth-Schultz HA, Imaizumi T. 2015. Photoperiodic flowering: time measurement mechanisms in leaves. Annual Review of Plant Biology 66:441−64 doi: 10.1146/annurev-arplant-043014-115555 |
[22] |
Shim JS, Imaizumi T. 2015. Circadian clock and photoperiodic response in Arabidopsis: from seasonal flowering to redox homeostasis. Biochemistry 54:157−70 doi: 10.1021/bi500922q |
[23] |
Johansson M, Staiger D. 2015. Time to flower: interplay between photoperiod and the circadian clock. Journal Experimental Botany 66:719−30 doi: 10.1093/jxb/eru441 |
[24] |
Feinbaum RL, Ausubel FM. 1988. Transcriptional regulation of the Arabidopsis thaliana chalcone synthase gene. Molecular and Cellular Biology 8:1985−92 doi: 10.1128/mcb.8.5.1985-1992.1988 |
[25] |
Ewing B, Hillier LD, Wendl MC, Green P. 1998. Base-Calling of automated sequencer traces using Phred. I. accuracy assessment. Genome Research 8:175−85 doi: 10.1101/gr.8.3.175 |
[26] |
Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature methods 12:357−60 doi: 10.1038/nmeth.3317 |
[27] |
Pertea M, Pertea MG, Antonescu CM, Chang TC, Mendell TJ, et al. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology 33:290−95 doi: 10.1038/nbt.3122 |
[28] |
Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using DIAMOND. Nature Methods 12:59−60 doi: 10.1038/nmeth.3176 |
[29] |
Brent E, Phil G. 1998. Base-Calling of Automated Sequencer Traces Using Phred. II. Error Probabilities. Genome Research 8:186−194 |
[30] |
Wang L, Feng Z, Wang X, Wang X, Zhang X. 2010. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136−38 doi: 10.1093/bioinformatics/btp612 |
[31] |
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25:2078−79 doi: 10.1093/bioinformatics/btp352 |
[32] |
Kosugi S, Natsume S, Yoshida K, MacLean D, Cano L, et al. 2013. Coval: improving alignment quality and variant calling accuracy for next-generation sequencing data. PLoS ONE 8:e75402 doi: 10.1371/journal.pone.0075402 |
[33] |
Meng L, Li H, Zhang L, Wang J. 2015. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop Journal 3:269−83 doi: 10.1016/j.cj.2015.01.001 |