[1]

Finch-Savage WE, Leubner-Metzger G. 2006. Seed dormancy and the control of germination. New Phytologist 171:501−23

doi: 10.1111/j.1469-8137.2006.01787.x
[2]

Bewley JD. 1997. Seed germination and dormancy. The Plant Cell 9:1055−66

doi: 10.1105/tpc.9.7.1055
[3]

Graeber K, Nakabayashi K, Miatton E, Leubner-Metzger G, Soppe WJ. 2012. Molecular mechanisms of seed dormancy. Plant, Cell & Environment 35:1769−86

doi: 10.1111/j.1365-3040.2012.02542.x
[4]

Iglesias-Fernández R, del Carmen Rodríguez-Gacio M, Matilla A. 2011. Progress in research on dry after ripening. Seed Science Research 21:69−80

doi: 10.1017/S096025851000036X
[5]

Nambara E, Marion-Poll A. 2005. Abscisic acid biosynthesis and catabolism. Annual Review of Plant Biology 56:165−85

doi: 10.1146/annurev.arplant.56.032604.144046
[6]

Yamaguchi S. 2008. Gibberellin metabolism and its regulation. Annual Review of Plant Biology 59:225−51

doi: 10.1146/annurev.arplant.59.032607.092804
[7]

Holdsworth MJ, Bentsink L, Soppe WJJ. 2008. Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytologist 179:33−54

doi: 10.1111/j.1469-8137.2008.02437.x
[8]

Matilla AJ, Carrillo-Barral N, Rodríguez-Gacio MdC. 2015. An update on the role of NCED and CYP707A ABA metabolism genes in seed dormancy induction and the response to after-ripening and nitrate. Journal of Plant Growth Regulation 34:274−93

doi: 10.1007/s00344-014-9464-7
[9]

Iglesias-Fernández R, Matilla A. 2009. After-ripening alters the gene expression pattern of oxidases involved in the ethylene and gibberellin pathways during early imbibition of Sisymbrium officinale L. seeds. Journal of Experimental Botany 60:1645−61

doi: 10.1093/jxb/erp029
[10]

Leubner-Metzger G. 2002. Seed after-ripening and over-expression of class I β-1,3-glucanase confer maternal effects on tobacco testa rupture and dormancy release. Planta 215:959−68

doi: 10.1007/s00425-002-0837-y
[11]

Romagosa I, Prada D, Moralejo MA, Sopena A, Muñoz P, et al. 2001. Dormancy, ABA content and sensitivity of a barley mutant to ABA application during seed development and after ripening. Journal of Experimental Botany 52:1499−506

doi: 10.1093/jexbot/52.360.1499
[12]

Beaudoin N, Serizet C, Gosti F, Giraudat J. 2000. Interactions between abscisic acid and ethylene signaling cascades. The Plant Cell 12:1103−15

doi: 10.1105/tpc.12.7.1103
[13]

Ali-Rachedi S, Bouinot D, Wagner MH, Bonnet M, Sotta B, et al. 2004. Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta 219:479−88

doi: 10.1007/s00425-004-1251-4
[14]

Leubner-Metzger G. 2003. Functions and regulation of β-1, 3-glucanases during seed germination, dormancy release and after-ripening. Seed Science Research 13:17−34

doi: 10.1079/SSR2002121
[15]

Gubler F, Hughes T, Waterhouse P, Jacobsen J. 2008. Regulation of dormancy in barley by blue light and after-ripening: effects on abscisic acid and gibberellin metabolism. Plant Physiology 147:886−96

doi: 10.1104/pp.107.115469
[16]

Du W, Cheng J, Cheng Y, Wang L, He Y, et al. 2015. Physiological characteristics and related gene expression of after-ripening on seed dormancy release in rice. Plant Biology 17:1156−64

doi: 10.1111/plb.12371
[17]

Bailly C. 2004. Active oxygen species and antioxidants in seed biology. Seed Science Research 14:93−107

doi: 10.1079/SSR2004159
[18]

Oracz K, El-Maarouf-Bouteau H, Farrant JM, Cooper K, Belghazi M, et al. 2007. ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. The Plant Journal 50:452−65

doi: 10.1111/j.1365-313X.2007.03063.x
[19]

Wang M, van der Meulen RM, Visser K, van Schaik HP, van Duijn B, et al. 1998. Effects of dormancy-breaking chemicals on ABA levels in barley grain embryos. Seed Science Research 8:129−37

doi: 10.1017/S0960258500004025
[20]

Pukacka S, Ratajczak E. 2005. Production and scavenging of reactive oxygen species in Fagus sylvatica seeds during storage at varied temperature and humidity. Journal of Plant Physiology 162:873−85

doi: 10.1016/j.jplph.2004.10.012
[21]

Lehner A, Bailly C, Flechel B, Poels P, Côme D, et al. 2006. Changes in wheat seed germination ability, soluble carbohydrate and antioxidant enzyme activities in the embryo during the desiccation phase of maturation. Journal of Cereal Science 43:175−82

doi: 10.1016/j.jcs.2005.07.005
[22]

Müller K, Carstens AC, Linkies A, Torres MA, Leubner-Metzger G. 2009. The NADPH-oxidase AtrbohB plays a role in Arabidopsis seed after-ripening. New Phytologist 184:885−97

doi: 10.1111/j.1469-8137.2009.03005.x
[23]

El-Maarouf-Bouteau H, Bailly C. 2008. Oxidative signaling in seed germination and dormancy. Plant Signaling & Behavior 3:175−82

doi: 10.4161/psb.3.3.5539
[24]

Wang WB, Kim YH, Lee HS, Kim KY, Deng XP, et al. 2009. Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiology and Biochemistry 47:570−77

doi: 10.1016/j.plaphy.2009.02.009
[25]

Sahu B, Sahu AK, Chennareddy SR, Soni A, Naithani SC. 2017. Insights on germinability and desiccation tolerance in developing neem seeds (Azadirachta indica): role of AOS, antioxidative enzymes and dehydrin-like protein. Plant Physiology and Biochemistry 112:64−73

doi: 10.1016/j.plaphy.2016.12.022
[26]

Mylona PV, Polidoros AN, Scandalios JG. 2007. Antioxidant gene responses to ROS-generating xenobiotics in developing and germinated scutella of maize. Journal of Experimental Botany 58:1301−12

doi: 10.1093/jxb/erl292
[27]

Yang B, Cheng J, Wang J, Cheng Y, He Y, et al. 2019. Physiological characteristics of cold stratification on seed dormancy release in rice. Plant Growth Regulation 89:131−141

doi: 10.1007/s10725-019-00516-z
[28]

Baskin J, Baskin C. 2021. The great diversity in kinds of seed dormancy: a revision of the Nikolaeva–Baskin classification system for primary seed dormancy. Seed Science Research 31(4):249−77

doi: 10.1017/S096025852100026X
[29]

Reed RC, Bradford KJ, Khanday I. 2022. Seed germination and vigor: ensuring crop sustainability in a changing climate. Heredity 128:450−59

doi: 10.1038/s41437-022-00497-2
[30]

Qin M, Zhang Y, Yang Y, Miao C, Liu S. 2020. Seed-specific overexpression of SPL12 and IPA1 improves seed dormancy and grain size in rice. Frontiers in Plant Science 11:532771

doi: 10.3389/fpls.2020.532771
[31]

Wang Q, Lin Q, Wu T, Duan E, Huang Y, et al. 2020. OsDOG1L-3 regulates seed dormancy through the abscisic acid pathway in rice. Plant Science 298:110570

doi: 10.1016/j.plantsci.2020.110570
[32]

Wang H, Zhang Y, Xiao N, Zhang G, Wang F, et al. 2020. Rice GERMIN-LIKE PROTEIN 2-1 functions in seed dormancy under the control of abscisic acid and gibberellic acid signaling pathways. Plant Physiology 183:1157−70

doi: 10.1104/pp.20.00253
[33]

Song W, Hao Q, Cai M, Wang Y, Zhu X, et al. 2020. Rice OsBT1 regulates seed dormancy through the glycometabolism pathway. Plant Physiology and Biochemistry 151:469−76

doi: 10.1016/j.plaphy.2020.03.055
[34]

Xu P, Tang G, Cui W, Chen G, Ma CL, et al. 2020. Transcriptional differences in peanut (Arachis hypogaea L.) seeds at the freshly harvested, after-ripening and newly germinated seed stages: insights into the regulatory networks of seed dormancy release and germination. PLoS One 15:e0219413

doi: 10.1371/journal.pone.0219413
[35]

Carrera E, Holman T, Medhurst A, Dietrich D, Footitt S, et al. 2008. Seed after-ripening is a discrete developmental pathway associated with specific gene networks in Arabidopsis. The Plant Journal 53:214−24

doi: 10.1111/j.1365-313X.2007.03331.x
[36]

Liu L, Lai Y, Cheng J, Wang L, Du W, et al. 2014. Dynamic quantitative trait locus analysis of seed vigor at three maturity stages in rice. PLoS One 9:e115732

doi: 10.1371/journal.pone.0115732
[37]

Wang L, Cheng J, Lai Y, Du W, Huang X, et al. 2014. Identification of QTLs with additive, epistatic and QTL × development interaction effects for seed dormancy in rice. Planta 239:411−20

doi: 10.1007/s00425-013-1991-0
[38]

He Y, Cheng J, He Y, Yang B, Cheng Y, et al. 2019. Influence of isopropylmalate synthase OsIPMS1 on seed vigour associated with amino acid and energy metabolism in rice. Plant Biotechnology Journal 17:322−337

doi: 10.1111/pbi.12979
[39]

Thornton B, Basu C. 2015. Rapid and simple method of qPCR primer design. In PCR Primer Design. Methods in Molecular Biology, ed. Basu C. 1275:XII,216. New York: Humana NY. pp. 173–79. https://doi.org/10.1007/978-1-4939-2365-6_13

[40]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402−8

doi: 10.1006/meth.2001.1262
[41]

Damaris RN, Lin Z, Yang P, He D. 2019. The rice alpha-amylase, conserved regulator of seed maturation and germination. International Journal of Molecular Sciences 20:450

doi: 10.3390/ijms20020450
[42]

Finkelstein R, Reeves W, Ariizumi T, Steber C. 2008. Molecular aspects of seed dormancy. Annual Review of Plant Biology 59:387−415

doi: 10.1146/annurev.arplant.59.032607.092740
[43]

Dekkers BJW, Pearce SP, van Bolderen-Veldkamp RPM, Holdsworth MJ, Bentsink L. 2016. Dormant and after-ripened Arabidopsis thaliana seeds are distinguished by early transcriptional differences in the imbibed state. Frontiers in Plant Science 7:1323

doi: 10.3389/fpls.2016.01323
[44]

Matilla AJ. 2021. The orthodox dry seeds are alive: A clear example of desiccation tolerance. Plants 11:20

doi: 10.3390/plants11010020
[45]

Buitink J, Leprince O. 2008. Intracellular glasses and seed survival in the dry state. Comptes Rendus Biologies 331:788−95

doi: 10.1016/j.crvi.2008.08.002
[46]

Ishibashi Y, Tawaratsumida T, Kondo K, Kasa S, Sakamoto M, et al. 2012. Reactive oxygen species are involved in gibberellin/abscisic acid signaling in barley aleurone cells. Plant Physiology 158:1705−14

doi: 10.1104/pp.111.192740
[47]

Meimoun P, Mordret E, Langlade NB, Balzergue S, Arribat S, et al. 2014. Is gene transcription involved in seed dry after-ripening? PLoS One 9:e86442

doi: 10.1371/journal.pone.0086442
[48]

Nelson SK, Ariizumi T, Steber CM. 2017. Biology in the dry seed: Transcriptome changes associated with dry seed dormancy and dormancy loss in the Arabidopsis GA-insensitive sleepy1-2 mutant. Frontiers in Plant Science 8:2158

doi: 10.3389/fpls.2017.02158
[49]

El-Maarouf-Bouteau H. 2022. The seed and the metabolism regulation. Biology 11:168

doi: 10.3390/biology11020168
[50]

Hwang SG, Lee CY, Tseng CS. 2018. Heterologous expression of rice 9-cis-epoxycarotenoid dioxygenase 4 (OsNCED4) in Arabidopsis confers sugar oversensitivity and drought tolerance. Botanical Studies 59:2

doi: 10.1186/s40529-018-0219-9
[51]

Huang Y, Guo Y, Liu Y, Zhang F, Wang Z, et al. 2018. 9-cis-Epoxycarotenoid Dioxygenase 3 regulates plant growth and enhances multi-abiotic stress tolerance in rice. Frontiers in Plant Science 9:162

doi: 10.3389/fpls.2018.00162
[52]

Li XC, Liao YY, Leung DW, Wang HY, Chen BL, et al. 2015. Divergent biochemical and enzymatic properties of oxalate oxidase isoforms encoded by four similar genes in rice. Phytochemistry 118:216−23

doi: 10.1016/j.phytochem.2015.08.019
[53]

Hashimoto M, Kisseleva L, Sawa S, Furukawa T, Komatsu S, et al. 2004. A novel rice PR10 protein, RSOsPR10, specifically induced in roots by biotic and abiotic stresses, possibly via the jasmonic acid signaling pathway. Plant Cell Physiology 45:550−59

doi: 10.1093/pcp/pch063
[54]

Takeuchi K, Gyohda A, Tominaga M, Kawakatsu M, Hatakeyama A, et al. 2011. RSOsPR10 expression in response to environmental stresses is regulated antagonistically by jasmonate/ethylene and salicylic acid signaling pathways in rice roots. Plant & Cell Physiology 52:1686−96

doi: 10.1093/pcp/pcr105
[55]

Huang LF, Lin KH, He SL, Chen JL, Jiang JZ, et al. 2016. Multiple patterns of regulation and overexpression of a ribonuclease-like pathogenesis-related protein gene, OsPR10a, conferring disease resistance in rice and Arabidopsis. PLoS One 11:e0156414

doi: 10.1371/journal.pone.0156414
[56]

Sano N, Rajjou L, North HM. 2020. Lost in translation: Physiological roles of stored mRNAs in seed germination. Plants 9:347

doi: 10.3390/plants9030347