[1]

Tu Y. 2011. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nature Medicine 17:1217−20

doi: 10.1038/nm.2471
[2]

Mutabingwa TK. 2005. Artemisinin-based combination therapies (ACTS): best hope for malaria treatment but inaccessible to the needy! Acta Tropica 95:305−15

doi: 10.1016/j.actatropica.2005.06.009
[3]

Weathers PJ, Arsenault PR, Covello PS, McMickle A, Teoh KH, et al. 2011. Artemisinin production in Artemisia annua: studies in planta and results of a novel delivery method for treating malaria and other neglected diseases. Phytochemistry Reviews 10:173−83

doi: 10.1007/s11101-010-9166-0
[4]

Jiang Y, Shui J, Zhang B, Chin JW, Yue R. 2020. The potential roles of artemisinin and its derivatives in the treatment of type 2 diabetes mellitus. Frontiers in Pharmacology 11:585487

doi: 10.3389/fphar.2020.585487
[5]

Lee AS, Hur HJ, Sung MJ. 2020. The effect of artemisinin on inflammation-associated lymphangiogenesis in experimental acute colitis. International Journal of Molecular Sciences 21:8068

doi: 10.3390/ijms21218068
[6]

Efferth T. 2007. Willmar Schwabe Award 2006: Antiplasmodial and antitumor activity of artemisinin from bench to bedside. Planta Medica 73:299−309

doi: 10.1055/s-2007-967138
[7]

Zhu C, Cook SP. 2012. A concise synthesis of (+)-artemisinin. Journal of the American Chemical Society 134:13577−79

doi: 10.1021/ja3061479
[8]

Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, et al. 2006. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940−43

doi: 10.1038/nature04640
[9]

Ro DK, Ouellet M, Paradise EM, Burd H, Eng D, et al. 2008. Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid. BMC Biotechnology 8:83

doi: 10.1186/1472-6750-8-83
[10]

Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, et al. 2013. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528−32

doi: 10.1038/nature12051
[11]

Duke MV, Paul RN, Elsohly HN, Sturtz G, Duke SO. 1994. Localization of artemisinin and artemisitene in foliar tissues of glanded and glandless biotypes of Artemisia annua L. International Journal of Plant Sciences 155:365−72

doi: 10.1086/297173
[12]

Kumar S, Gupta SK, Singh P, Bajpai P, Gupta MM, et al. 2004. High yields of artemisinin by multi-harvest of Artemisia annua crops. Industrial Crops & Products 19:77−90

doi: 10.1016/j.indcrop.2003.07.003
[13]

Newman JD, Chappell J. 1999. Isoprenoid biosynthesis in plants: carbon partitioning within the cytoplasmic pathway. Critical Reviews in Biochemistry and Molecular Biology 34:95−106

doi: 10.1080/10409239991209228
[14]

Bouvier F, Rahier A, Camara B. 2005. Biogenesis, molecular regulation and function of plant isoprenoids. Progress in Lipid Research 44:357−429

doi: 10.1016/j.plipres.2005.09.003
[15]

Ram M, Khan MA, Jha P, Khan S, Kiran U, et al. 2010. HMG-CoA reductase limits artemisinin biosynthesis and accumulation in Artemisia annua L. plants. Acta Physiologiae Plantarum 32:859−66

doi: 10.1007/s11738-010-0470-5
[16]

Towler MJ, Weathers PJ. 2007. Evidence of artemisinin production from IPP stemming from both mevalonate and non-mevalanate pathways. Plant Cell Reports 26:2129−36

doi: 10.1007/s00299-007-0420-x
[17]

Mercke P, Bengtsson M, Bouwmeester HJ, Posthumus MA, Brodelius PE. 2000. Molecular cloning, expression, and characterization of amorpha-4,11-diene synthase, a key enzyme of artemisinin biosynthesis in Artemisia annua L. Archives of Biochemistry and Biophysics 381:173−80

doi: 10.1006/abbi.2000.1962
[18]

Teoh KH, Polichuk DR, Reed DW, Nowak G, Covello PS. 2006. Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin. FEBS Letters 580:1411−16

doi: 10.1016/j.febslet.2006.01.065
[19]

Zhang Y, Teoh KH, Reed DW, Maes L, Goossens A, et al. 2008. The molecular cloning of artemisinic aldehyde Δ11(13) reductase and its role in glandular trichome-dependent biosynthesis of artemisinin in Artemisia annua. Journal of Biological Chemistry 283:21501−8

doi: 10.1074/jbc.M803090200
[20]

Teoh KH, Polichuk DR, Reed DW, Covello PS. 2009. Molecular cloning of an aldehyde dehydrogenase implicated in artemisinin biosynthesis in Artemisia annua. Botany 87:635−42

doi: 10.1139/B09-032
[21]

Sy LK, Brown GD. 2002. The mechanism of the spontaneous autoxidation of dihydroartemisinic acid. Tetrahedron 58:897−908

doi: 10.1016/S0040-4020(01)01193-0
[22]

Brown GD, Sy LK. 2004. In vivo transformations of dihydroartemisinic acid in Artemisia annua plants. Tetrahedron 60:1139−59

doi: 10.1016/j.tet.2003.11.070
[23]

Olsson ME, Olofsson LM, Lindahl AL, Lundgren A, Brodelius M, et al. 2009. Localization of enzymes of artemisinin biosynthesis to the apical cells of glandular secretory trichomes of Artemisia annua L. Phytochemistry 70:1123−28

doi: 10.1016/j.phytochem.2009.07.009
[24]

Olofsson L, Engström A, Lundgren A, Brodelius PE. 2011. Relative expression of genes of terpene metabolism in different tissues of Artemisia annua L. BMC Plant Biology 11:45

doi: 10.1186/1471-2229-11-45
[25]

Zheng H, Fu X, Shao J, Tang Y, Yu M, et al. 2023. Transcriptional regulatory network of high-value active ingredients in medicinal plants. Trends in Plant Science 28:429−46

doi: 10.1016/j.tplants.2022.12.007
[26]

Licausi F, Ohme-Takagi M, Perata P. 2013. APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytologist 199:639−49

doi: 10.1111/nph.12291
[27]

Van der Fits L, Memelink J. 2000. ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295−97

doi: 10.1126/science.289.5477.295
[28]

Sears MT, Zhang H, Rushton PJ, Wu M, Han S, et al. 2014. NtERF32: a non-NIC2 locus AP2/ERF transcription factor required in jasmonate-inducible nicotine biosynthesis in tobacco. Plant Molecular Biology 84:49−66

doi: 10.1007/s11103-013-0116-2
[29]

Yu Z, Li J, Yang C, Hu W, Wang L, et al. 2012. The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L. Molecular Plant 5:353−65

doi: 10.1093/mp/ssr087
[30]

Lu X, Zhang L, Zhang F, Jiang W, Shen Q, et al. 2013. AaORA, a trichome-specific AP2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea. New Phytologist 198:1191−202

doi: 10.1111/nph.12207
[31]

Tan H, Xiao L, Gao S, Li Q, Chen J, et al. 2015. TRICHOME AND ARTEMISININ REGULATOR 1 is required for trichome development and artemisinin biosynthesis in Artemisia annua. Molecular Plant 8:1396−411

doi: 10.1016/j.molp.2015.04.002
[32]

Ma Y, Xu D, Li L, Zhang F, Fu X, et al. 2018. Jasmonate promotes artemisinin biosynthesis by activating the TCP14-ORA complex in Artemisia annua. Science Advances 4:eaas9357

doi: 10.1126/sciadv.aas9357
[33]

Ma Y, Xu D, Yan X, Wu ZK, Kayani SI, et al. 2021. Jasmonate- and abscisic acid-activated AaGSW1-AaTCP15/AaORA transcriptional cascade promotes artemisinin biosynthesis in Artemisia annua. Plant Biotechnology Journal 19:1412−28

doi: 10.1111/pbi.13561
[34]

Phukan UJ, Jeena GS, Shukla RK. 2016. WRKY transcription factors: molecular regulation and stress responses in plants. Frontiers in Plant Science 7:760

doi: 10.3389/fpls.2016.00760
[35]

Ma D, Pu G, Lei C, Ma L, Wang H, et al. 2009. Isolation and characterization of AaWRKY1, an Artemisia annua transcription factor that regulates the amorpha-4, 11-diene synthase gene, a key gene of artemisinin biosynthesis. Plant & Cell Physiology 50:2146−61

doi: 10.1093/pcp/pcp149
[36]

Jiang W, Fu X, Pan Q, Tang Y, Shen Q, et al. 2016. Overexpression of AaWRKY1 leads to an enhanced content of artemisinin in Artemisia annua. BioMed Research International 2016:7314971

doi: 10.1155/2016/7314971
[37]

Chen M, Yan T, Shen Q, Lu X, Pan Q, et al. 2017. GLANDULAR TRICHOME-SPECIFIC WRKY 1 promotes artemisinin biosynthesis in Artemisia annua. New Phytologist 214:304−16

doi: 10.1111/nph.14373
[38]

Fu X, Peng B, Hassani D, Xie L, Liu H, et al. 2021. AaWRKY9 contributes to light- and jasmonate-mediated to regulate the biosynthesis of artemisinin in Artemisia annua. New Phytologist 231:1858−74

doi: 10.1111/nph.17453
[39]

Vom Endt D, Kijne JW, Memelink J. 2002. Transcription factors controlling plant secondary metabolism: what regulates the regulators? Phytochemistry 61:107−14

doi: 10.1016/s0031-9422(02)00185-1
[40]

Morohashi K, Zhao M, Yang M, Read B, Lloyd A, et al. 2007. Participation of the Arabidopsis bHLH factor GL3 in trichome initiation regulatory events. Plant Physiology 145:736−46

doi: 10.1104/pp.107.104521
[41]

Qian Y, Zhang T, Yu Y, Gou L, Yang J, et al. 2021. Regulatory mechanisms of bHLH transcription factors in plant adaptive responses to various abiotic stresses. Frontiers in Plant Science 12:677611

doi: 10.3389/fpls.2021.677611
[42]

Ji Y, Xiao J, Shen Y, Ma D, Li Z, et al. 2014. Cloning and characterization of AabHLH1, a bHLH transcription factor that positively regulates artemisinin biosynthesis in Artemisia annua. Plant & Cell Physiology 55:1592−604

doi: 10.1093/pcp/pcu090
[43]

Hong G, Xue X, Mao Y, Wang L, Chen X. 2012. Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. The Plant Cell 24:2635−48

doi: 10.1105/tpc.112.098749
[44]

Shen Q, Lu X, Yan T, Fu X, Lv Z, et al. 2016. The jasmonate-responsive AaMYC2 transcription factor positively regulates artemisinin biosynthesis in Artemisia annua. New Phytologist 210:1269−81

doi: 10.1111/nph.13874
[45]

Shu G, Tang Y, Yuan M, Wei N, Zhang F, et al. 2022. Molecular insights into AabZIP1-mediated regulation on artemisinin biosynthesis and drought tolerance in Artemisia annua. Acta Pharmaceutica Sinica B 12:1500−13

doi: 10.1016/j.apsb.2021.09.026
[46]

Xiang L, Jian D, Zhang F, Yang C, Bai G, et al. 2019. The cold-induced transcription factor bHLH112 promotes artemisinin biosynthesis indirectly via ERF1 in Artemisia annua. Journal of Experimental Botany 70:4835−48

doi: 10.1093/jxb/erz220
[47]

Kim SY, Kim SG, Kim YS, Seo PJ, Bae M, et al. 2006. Exploring membrane-associated NAC transcription factors in Arabidopsis: implications for membrane biology in genome regulation. Nucleic Acids Research 35:203−13

doi: 10.1093/nar/gkl1068
[48]

Mao X, Zhang H, Qian X, Li A, Zhao G, et al. 2012. TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. Journal of Experimental Botany 63:2933−46

doi: 10.1093/jxb/err462
[49]

Chen X, Wang Y, Lv B, Li J, Luo L, et al. 2014. The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway. Plant & Cell Physiology 55:604−19

doi: 10.1093/pcp/pct204
[50]

Lv Z, Wang S, Zhang F, Chen L, Hao X, et al. 2016. Overexpression of a novel NAC domain-containing transcription factor gene (AaNAC1) enhances the content of artemisinin and increases tolerance to drought and Botrytis cinerea in Artemisia annua. Plant & Cell Physiology 57:1961−71

doi: 10.1093/pcp/pcw118
[51]

Zhang F, Fu X, Lv Z, Lu X, Shen Q, et al. 2015. A basic leucine zipper transcription factor, AabZIP1, connects abscisic acid signaling with artemisinin biosynthesis in Artemisia annua. Molecular Plant 8:163−75

doi: 10.1016/j.molp.2014.12.004
[52]

Tang Y, Li L, Yan T, Fu X, Shi P, et al. 2018. AaEIN3 mediates the downregulation of artemisinin biosynthesis by ethylene signaling through promoting leaf senescence in Artemisia annua. Frontiers in Plant Science 9:413

doi: 10.3389/fpls.2018.00413
[53]

Hao X, Zhong Y, Nützmann HW, Fu X, Yan T, et al. 2019. Light-induced artemisinin biosynthesis is regulated by the bZIP transcription factor AaHY5 in Artemisia annua. Plant & Cell Physiology 60:1747−60

doi: 10.1093/pcp/pcz084
[54]

Vernoud V, Laigle G, Rozier F, Meeley RB, Perez P, et al. 2009. The HD-ZIP IV transcription factor OCL4 is necessary for trichome patterning and anther development in maize. The Plant Journal 59:883−94

doi: 10.1111/j.1365-313X.2009.03916.x
[55]

Zhu H, Sun X, Zhang Q, Song P, Hu Q, et al. 2018. GLABROUS (CmGL) encodes a HD-ZIP IV transcription factor playing roles in multicellular trichome initiation in melon. Theoretical and Applied Genetics 131:569−79

doi: 10.1007/s00122-017-3019-9
[56]

Yan T, Chen M, Shen Q, Li L, Fu X, et al. 2017. HOMEODOMAIN PROTEIN 1 is required for jasmonate-mediated glandular trichome initiation in Artemisia annua. New Phytologist 213:1145−55

doi: 10.1111/nph.14205
[57]

Xie L, Yan T, Li L, Chen M, Ma Y, et al. 2021. The WRKY transcription factor AaGSW2 promotes glandular trichome initiation in Artemisia annua. Journal of Experimental Botany 72:1691−701

doi: 10.1093/jxb/eraa523
[58]

Yan T, Li L, Xie L, Chen M, Shen Q, et al. 2018. A novel HD-ZIP IV/MIXTA complex promotes glandular trichome initiation and cuticle development in Artemisia annua. New Phytologist 218:567−78

doi: 10.1111/nph.15005
[59]

Shi P, Fu X, Shen Q, Liu M, Pan Q, et al. 2018. The roles of AaMIXTA1 in regulating the initiation of glandular trichomes and cuticle biosynthesis in Artemisia annua. New Phytologist 217:261−76

doi: 10.1111/nph.14789
[60]

Kirik V, Simon M, Huelskamp M, Schiefelbein J. 2004. The ENHANCER OF TRY AND CPC1 gene acts redundantly with TRIPTYCHON and CAPRICE in trichome and root hair cell patterning in Arabidopsis. Developmental Biology 268:506−13

doi: 10.1016/j.ydbio.2003.12.037
[61]

Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, et al. 2007. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. The Plant Journal 50:660−77

doi: 10.1111/j.1365-313X.2007.03078.x
[62]

Wester K, Digiuni S, Geier F, Timmer J, Fleck C, et al. 2009. Functional diversity of R3 single-repeat genes in trichome development. Development 136:1487−96

doi: 10.1242/dev.021733
[63]

Matías-Hernández L, Jiang W, Yang K, Tang K, Brodelius PE, et al. 2017. AaMYB1 and its orthologue AtMYB61 affect terpene metabolism and trichome development in Artemisia annua and Arabidopsis thaliana. The Plant Journal 90:520−34

doi: 10.1111/tpj.13509
[64]

Martin C, Paz-Ares J. 1997. MYB transcription factors in plants. Trends in Genetics 13:67−73

doi: 10.1016/S0168-9525(96)10049-4
[65]

Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, et al. 2010. MYB transcription factors in Arabidopsis. Trends in Plant Science 15:573−81

doi: 10.1016/j.tplants.2010.06.005
[66]

Zhou Z, Tan H, Li Q, Li Q, Wang Y, et al. 2020. TRICHOME AND ARTEMISININ REGULATOR 2 positively regulates trichome development and artemisinin biosynthesis in Artemisia annua. New Phytologist 228:932−45

doi: 10.1111/nph.16777
[67]

Qin W, Xie L, Li Y, Liu H, Fu X, et al. 2021. An R2R3-MYB transcription factor positively regulates the glandular secretory trichome initiation in Artemisia annua L. Frontiers in Plant Science 12:657156

doi: 10.3389/fpls.2021.657156
[68]

Xie L, Yan T, Li L, Chen M, Hassani D, et al. 2021. An HD-ZIP-MYB complex regulates glandular secretory trichome initiation in Artemisia annua. New Phytologist 231:2050−64

doi: 10.1111/nph.17514
[69]

Aquil S, Husaini AM, Abdin MZ, Rather GM. 2009. Overexpression of the HMG-CoA reductase gene leads to enhanced artemisinin biosynthesis in transgenic Artemisia annua plants. Planta Medica 75:1453−58

doi: 10.1055/s-0029-1185775
[70]

Nafis T, Akmal M, Ram M, Alam P, Ahlawat S, et al. 2011. Enhancement of artemisinin content by constitutive expression of the HMG-CoA reductase gene in high-yielding strain of Artemisia annua L. Plant Biotechnology Reports 5:53−60

doi: 10.1007/s11816-010-0156-x
[71]

Xiang L, Zeng L, Yuan Y, Chen M, Wang F, et al. 2012. Enhancement of artemisinin biosynthesis by overexpressing DXR, CYP71AV1 and CPR in the plants of Artemisia annua L. Plant Omics J 5:503−7

[72]

Han J, Liu B, Ye H, Wang H, Li Z, et al. 2006. Effects of overexpression of the endogenous farnesyl diphosphate synthase on the artemisinin content in Artemisia annua L. Journal of Integrative Plant Biology 48:482−87

doi: 10.1111/j.1744-7909.2006.00208.x
[73]

Banyai W, Kirdmanee C, Mii M, Supaibulwatana K. 2010. Overexpression of farnesyl pyrophosphate synthase (FPS) gene affected artemisinin content and growth of Artemisia annua L. Plant Cell, Tissue and Organ Culture 103:255−65

doi: 10.1007/s11240-010-9775-8
[74]

Ma C, Wang H, Lu X, Wang H, Xu G, et al. 2009. Terpenoid metabolic profiling analysis of transgenic Artemisia annua L. by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. Metabolomics 5:497−506

doi: 10.1007/s11306-009-0170-6
[75]

Shen Q, Chen YF, Wang T, Wu SY, Lu X, et al. 2012. Overexpression of the cytochrome P450 monooxygenase (cyp71av1) and cytochrome P450 reductase (cpr) genes increased artemisinin content in Artemisia annua (Asteraceae). Genetics and Molecular Research 11:3298−309

doi: 10.4238/2012.September.12.13
[76]

Alam P, Abdin MZ. 2011. Over-expression of HMG-CoA reductase and amorpha-4,11-diene synthase genes in Artemisia annua L. and its influence on artemisinin content. Plant Cell Reports 30:1919−28

doi: 10.1007/s00299-011-1099-6
[77]

Chen Y, Shen Q, Wang Y, Wang T, Wu S, et al. 2013. The stacked overexpression of FPS, CYP71AV1 and CPR genes leads to the increase of artemisinin level in Artemisia annua L. Plant Biotechnology Reports 7:287−95

doi: 10.1007/s11816-012-0262-z
[78]

Lu X, Shen Q, Zhang L, Zhang F, Jiang W, et al. 2013. Promotion of artemisinin biosynthesis in transgenic Artemisia annua by overexpressing ADS, CYP71AV1 and CPR genes. Industrial Crops & Products 49:380−85

doi: 10.1016/j.indcrop.2013.04.045
[79]

Shi P, Fu X, Liu M, Shen Q, Jiang W, et al. 2017. Promotion of artemisinin content in Artemisia annua by overexpression of multiple artemisinin biosynthetic pathway genes. Plant Cell, Tissue and Organ Culture 129:251−59

doi: 10.1007/s11240-017-1173-z
[80]

Wang Y, Jing F, Yu S, Chen Y, Wang T, et al. 2011. Co-overexpression of the HMGR and FPS genes enhances artemisinin content in Artemisia annua L. Journal of Medicinal Plants Research 5:3396−403

[81]

Cheng A, Lou Y, Mao Y, Lu S, Wang L, et al. 2007. Plant terpenoids: Biosynthesis and ecological functions. Journal of Integrative Plant Biology 49:179−86

doi: 10.1111/j.1744-7909.2007.00395.x
[82]

Lv Z, Zhang F, Pan Q, Fu X, Jiang W, et al. 2016. Branch pathway blocking in Artemisia annua is a useful method for obtaining high yield artemisinin. Plant & Cell Physiology 57:588−602

doi: 10.1093/pcp/pcw014