[1]

Castro-Larragoitia J, Kramar U, Puchelt H. 1997. 200 years of mining activities at La Paz/San Luis Potosí/Mexico — Consequences for environment and geochemical exploration. Journal of Geochemical Exploration 58:81−91

doi: 10.1016/S0375-6742(96)00054-4
[2]

Oliveira A, Pampulha ME, Neto MM, Almeida AC. 2009. Enumeration and characterization of arsenic-tolerant diazotrophic bacteria in a long-term heavy-metal-contaminated soil. Water, Air, and Soil Pollution 200:237−43

doi: 10.1007/s11270-008-9907-5
[3]

Tipayno SC, Truu J, Samaddar S, Truu M, Preem JK, et al. 2018. The bacterial community structure and functional profile in the heavy metal contaminated paddy soils, surrounding a nonferrous smelter in South Korea. Ecology and Evolution 8:6157−68

doi: 10.1002/ece3.4170
[4]

Chakraborti D, Rahman MM, Chatterjee A, Das D, Das B, et al. 2016. Fate of over 480 million inhabitants living in arsenic and fluoride endemic Indian districts: Magnitude, health, socio-economic effects and mitigation approaches. Journal of Trace Elements in Medicine and Biology 38:33−45

doi: 10.1016/j.jtemb.2016.05.001
[5]

Adriano DC. 2001. Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals. New York: Springer. xii, 867 pp. https://link.springer.com/book/10.1007/978-0-387-21510-5

[6]

Nriagu JO. 1990. Global metal pollution: poisoning the biosphere? Environment: Science and Policy for Sustainable Development 32:7−33

doi: 10.1080/00139157.1990.9929037
[7]

Frankenberger WT, Arshad M. 2002. Volatilization of arsenic in environmental chemistry of arsenic. In Environmental Chemistry of Arsenic, ed. Frankenberger WT. New York: Marcel Dekker. pp. 363–380.

[8]

Sharma S, Tiwari S, Hasan A, Saxena V, Pandey LM. 2018. Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils. 3 Biotech 8:216

doi: 10.1007/s13205-018-1237-8
[9]

Haq S, Bhatti AA, Dar ZA, Bhat SA. 2020. Phytoremediation of heavy metals: an eco-friendly and sustainable approach. In Bioremediation and Biotechnology, eds. Hakeem K Bhat R, Qadri H. Cham: Springer. https://doi.org/10.1007/978-3-030-35691-0_10

[10]

Ma Y, Oliveira RS, Freitas H, Zhang C. 2016. Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Frontiers in Plant Science 7:918

doi: 10.3389/fpls.2016.00918
[11]

Pinto AP, de Varennes A, Dias CMB, Lopes ME. 2018. Microbial-assisted phytoremediation: a convenient use of plant and microbes to clean up soils. In Phytoremediation: Management of Environmental Contaminants, eds. Ansari AA, Gill SS, Gill R, Lanza GR, Newman L. Switzerland: Springer International Publishing. Volume 6, pp. 21–87. https://doi.org/10.1007/978-3-319-99651-6_2

[12]

Salt DE, Smith RD, Raskin I. 1998. Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology 49:643−68

doi: 10.1146/annurev.arplant.49.1.643
[13]

Wenzel WW, Lombi E, Adriano DC. 1999. Biogeochemical processes in the rhizosphere: role in phytoremediation of metal-polluted soils. In Heavy Metal Stress in Plants: From Molecules to Ecosystems, eds. Prasad MNV, Hagemeyer J. Berlin, Heidelberg: Springer. pp. 273–303. https://doi.org/10.1007/978-3-662-07745-0_13

[14]

Wenzel WW, Adriano DC, Salt D, Smith R. 1999. Phytoremediation: a plant—microbe-based remediation system. In Bioremediation of Contaminated Soils, eds. Adriano DC, Bollag JM, Frankenberger WT, Sims RC. New York: Academic Press. pp. 457–508. https://doi.org/10.2134/agronmonogr37.c18.

[15]

Raklami A, Meddich A, Oufdou K, Baslam M. 2022. Plants-microorganisms-based bioremediation for heavy metal cleanup: recent developments, phytoremediation techniques, regulation mechanisms, and molecular responses. International Journal of Molecular Sciences 23:5031

doi: 10.3390/ijms23095031
[16]

Hu X, Wang J, Lv Y, Liu X, Zhong J, et al. 2021. Effects of heavy metals/metalloids and soil properties on microbial communities in farmland in the vicinity of a metals smelter. Frontiers in Microbiology 12:707786

doi: 10.3389/fmicb.2021.707786
[17]

de los Santos GG, Steiner JJ, Beuselinck PR. 2001. Adaptive ecology of Lotus corniculatus L. genotypes: II. crossing ability. Crop Science 41:564−70

doi: 10.2135/cropsci2001.412564x
[18]

Escaray FJ, Menendez AB, Gárriz A, Pieckenstain FL, Estrella MJ, et al. 2012. Ecological and agronomic importance of the plant genus Lotus. Its application in grassland sustainability and the amelioration of constrained and contaminated soils. Plant Science 182:121−33

doi: 10.1016/j.plantsci.2011.03.016
[19]

Howieson JG, O'Hara GW, Carr SJ. 2000. Changing roles for legumes in Mediterranean agriculture: developments from an Australian perspective. Field Crops Research 65:107−22

doi: 10.1016/S0378-4290(99)00081-7
[20]

Sokoloff DD, Lock JM. 2005. Legumes of the world. tribe loteae. In Legumes of the World, eds. Lewis G, Schrire B, Mackinder B, Lock M. Richmond VA: Royal Botanic Gardens. pp. 455–65.

[21]

Lorite MJ, Estrella MJ, Escaray FJ, Sannazzaro A, Videira e Castro IM, et al. 2018. The rhizobia-Lotus symbioses: deeply specific and widely diverse. Frontiers in Microbiology 9:2055

doi: 10.3389/fmicb.2018.02055
[22]

Soares R, Trejo J, Lorite MJ, Figueira E, Sanjuán J, et al. 2020. Diversity, phylogeny and plant growth promotion traits of nodule associated bacteria isolated from Lotus parviflorus. Microorganisms 8:499

doi: 10.3390/microorganisms8040499
[23]

Diaz P, Borsani O, Monza J. 1995. Effect of inoculation and nitrate on nitrate reductase activity and acetylene reduction activity in Lotus sp.-Rhizobium loti symbiosis. Symbiosis 19:53−63

[24]

Pajuelo E, Stougaard J. 2005. Lotus japonicus’s a model system. In Lotus japonicus Handbook, ed. Márquez AJ. Netherlands: Springer. pp. 3–24. https://doi.org/10.1007/1-4020-3735-X_1.

[25]

Mun T, Bachmann A, Gupta V, Stougaard J, Andersen SU. 2016. Lotus Base: an integrated information portal for the model legume Lotus japonicus. Scientific Reports 6:39447

doi: 10.1038/srep39447
[26]

Díaz P, Borsani O, Monza J. 2005. Lotus-related species and their agronomic importance. In In Lotus japonicus Handbook, ed. Márquez AJ. Netherlands: Springer. pp. 25–37. https://doi.org/10.1007/1-4020-3735-X_2.

[27]

Batista L, Tomasco I, Lorite MJ, Sanjuán J, Monza J. 2013. Diversity and phylogeny of rhizobial strains isolated from Lotus uliginosus grown in Uruguayan soils. Applied Soil Ecology 66:19−28

doi: 10.1016/j.apsoil.2013.01.009
[28]

Lorite MJ, Videira e Castro I, Muñoz S, Sanjuán J. 2012. Phylogenetic relationship of Lotus uliginosus symbionts with bradyrhizobia nodulating genistoid legumes. FEMS Microbiology Ecology 79:454−64

doi: 10.1111/j.1574-6941.2011.01230.x
[29]

De Meyer SE, Van Hoorde K, Vekeman B, Braeckman T, Willems A. 2011. Genetic diversity of rhizobia associated with indigenous legumes in different regions of Flanders (Belgium). Soil Biology and Biochemistry 43:2384−96

doi: 10.1016/j.soilbio.2011.08.005
[30]

Somasegaran P, Hoben HJ. 1994. Handbook for rhizobia: methods in legume-rhizobium technology. New York: Springer. 450 pp. https://doi.org/10.1007/978-1-4613-8375-8

[31]

de Bruijn FJ. 1992. Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Applied and Environmental Microbiology 58:2180−87

doi: 10.1128/aem.58.7.2180-2187.1992
[32]

Zhou S, Li Q, Jiang H, Lindström K, Zhang X. 2013. Mesorhizobium sangaii sp. nov., isolated from the root nodules of Astragalus luteolus and Astragalus ernestii. International Journal of Systematic and Evolutionary Microbiology 63:2794−99

doi: 10.1099/ijs.0.044685-0
[33]

Irisarri P, Cardozo G, Tartaglia C, Reyno R, Gutiérrez P, et al. 2019. Selection of competitive and efficient rhizobia strains for white clover. Frontiers in Microbiology 10:768

doi: 10.10.3389/fmicb.2019.00768
[34]

Versalovic J, Koeuth T, Lupski JR. 1991. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Research 19:6823−31

doi: 10.1093/nar/19.24.6823
[35]

Pavlícek A, Hrdá Š, Flegr J. 1999. Free-Tree-freeware program for construction of phylogenetic trees on the basis of distance data and bootstrap/jackknife analysis of the tree robustness. Application in the RAPD analysis of genus Frenkelia. Folia Biologica (Praha) 45:97−99

[36]

Efron B. 2003. Second thoughts on the bootstrap. Statistical Science 18:135−40

doi: 10.1214/ss/1063994968
[37]

Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 1991. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology 173:697−703

doi: 10.1128/jb.173.2.697-703.1991
[38]

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 2015. Basic local alignment search tool. Journal of Molecular Biology 215:405−10

doi: 10.1016/S0022-2836(05)80360-2
[39]

Kumar S, Stecher G, Tamura K. 2016. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33:1870−74

doi: 10.1093/molbev/msw054
[40]

Jensen HL. 1942. Nitrogen fixation in leguminous plants. I. General characters of root-nodule bacteria isolated from species of Medicago and Trifolium in Australia. Proceedings of the Linnean Society of New South Wales 67:98−108

[41]

Mandal BK, Suzuki KT. 2002. Arsenic round the world: a review. Talanta 58:201−35

doi: 10.1016/S0039-9140(02)00268-0
[42]

Ferreira EM, Marques JF. 1992. Selection of Portuguese Rhizobium leguminosarum bv. trifolii strains for production of legume inoculants. Plant and Soil 147:151−58

doi: 10.1007/BF00009381
[43]

Chatterjee A, Das D, Mandal BK, Chowdhury TR, Samanta G, et al. 1995. Arsenic in ground water in six districts of West Bengal, India: the biggest arsenic calamity in the world. Part I. Arsenic species in drinking water and urine of the affected people. Analyst 120:643−50

doi: 10.1039/AN9952000643
[44]

Lafay B, Burdon JJ. 2006. Molecular diversity of rhizobia nodulating the invasive legume Cytisus scoparius in Australia. Journal of Applied Microbiology 100:1228−38

doi: 10.1111/j.1365-2672.2006.02902.x
[45]

Weir BS, Turner SJ, Silvester WB, Park DC, Young JM. 2004. Unexpectedly diverse Mesorhizobium strains and Rhizobium leguminosarum nodulate native legume genera of New Zealand, while introduced legume weeds are nodulated by Bradyrhizobium species. Applied and Environmental Microbiology 70:5980−87

doi: 10.1128/AEM.70.10.5980-5987.2004
[46]

Bromfield ESP, Cloutier S, Tambong JT, Tran Thi TV. 2017. Soybeans inoculated with root zone soils of Canadian native legumes harbour diverse and novel Bradyrhizobium spp. that possess agricultural potential. Systematic and Applied Microbiology 40:440−47

doi: 10.1016/j.syapm.2017.07.007
[47]

Mason MLT, Tabing BLC, Yamamoto A, Saeki Y. 2018. Influence of flooding and soil properties on the genetic diversity and distribution of indigenous soybean-nodulating bradyrhizobia in the Philippines. Heliyon 4:e00921

doi: 10.1016/j.heliyon.2018.e00921
[48]

Aserse AA, Woyke T, Kyrpides NC, Whitman WB, Lindström K. 2017. Draft genome sequences of Bradyrhizobium shewense sp. nov. ERR11T and Bradyrhizobium yuanmingense CCBAU 10071T. Stand Genomic Science 12:74

doi: 10.1186/s40793-017-0283-x
[49]

Crespo D. 2006. The role of pasture improvement on the rehabilitation of the montado/dehesa system and in developing its traditional products. In Animal Products from the Mediterranean Area, EAAP publication No. 119, eds. Ramalho Ribeiro J, Horta A, Mosconi C, Rosati A. The Netherlands: Wageningen Academic Publishers, pp. 185–195. https://doi.org/10.3920/978-90-8686-568-0.

[50]

Armendariz AL, Talano MA, Wevar Oller AL, Medina MI, Agostini E. 2015. Effect of arsenic on tolerance mechanisms of two plant growth-promoting bacteria used as biological inoculants. Journal of Environmental Sciences 33:203−10

doi: 10.1016/j.jes.2014.12.024
[51]

Carrasco JA, Armario P, Pajuelo E, Burgos A, Caviedes MA, et al. 2005. Isolation and characterisation of symbiotically effective Rhizobium resistant to arsenic and heavy metals after the toxic spill at the Aznalcóllar pyrite mine. Soil Biology and Biochemistry 37:1131−40

doi: 10.1016/j.soilbio.2004.11.015
[52]

Ike A, Sriprang R, Ono H, Murooka Y, Yamashita M. 2007. Bioremediation of cadmium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes. Chemosphere 66:1670−76

doi: 10.1016/j.chemosphere.2006.07.058
[53]

Sá-Pereira P, Rodrigues M, Videira e Castro I, Simões F. 2007. Identification of an arsenic resistance mechanism in rhizobial strains. World Journal of Microbiology & Biotechnology 23:1351−56

doi: 10.1007/s11274-007-9370-2
[54]

Dary M, Chamber-Pérez MA, Palomares AJ, Pajuelo E. 2010. "In situ" phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. Journal of Hazardous Materials 177:323−30

doi: 10.1016/j.jhazmat.2009.12.035
[55]

Pajuelo E, Rodriguez-Llorente I, Lafuente A, Caviedes M. 2011. Legume-Rhizobium symbioses as a tool for bioremediation of heavy metal polluted soils. In Biomanagement of Metal-Contaminated Soils. Environmental Pollution, eds. Khan M, Zaidi A, Goel R, Musarrat J. Volume 20. Dordrecht: Springer. pp. 95−123. https://doi.org/10.1007/978-94-007-1914-9_4.

[56]

Zhuang P, Yang Q, Wang H, Shu W. 2007. Phytoextraction of heavy metals by eight plant species in the field. Water, Air, and Soil Pollution 184:235−42

doi: 10.1007/s11270-007-9412-2
[57]

Greipsson S. 2011. Phytoremediation. Nature Education Knowledge 3:7

[58]

Ali H, Khan E, Sajad MA. 2013. Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869−81

doi: 10.1016/j.chemosphere.2013.01.075
[59]

Castro IV, Ferreira EM, McGrath SP. 1997. Effectiveness and genetic diversity of Rhizobium leguminosarum bv. trifolii isolates in Portuguese soils polluted by industrial effluents. Soil Biology and Biochemistry 29:1209−13

doi: 10.1016/S0038-0717(97)00029-1
[60]

Castro IV, Ferreira EM, McGrath SP. 2003. Survival and plasmid stability of rhizobia introduced into a contaminated soil. Soil Biology and Biochemistry 35:49−54

doi: 10.1016/S0038-0717(02)00235-3
[61]

Delorme TA, Gagliardi JV, Angle JS, van Berkum P, Chaney RL. 2003. Phenotypic and genetic diversity of rhizobia isolated from nodules of clover grown in a zinc and cadmium contaminated soil. Soil Science Society of America Journal 67:1746−54

doi: 10.2136/sssaj2003.1746
[62]

de M Rangel W, de Oliveira Longatti SM, Ferreira PAA, Bonaldi DS, Guimarães AA, et al. 2017. Leguminosae native nodulating bacteria from a gold mine As-contaminated soil: multi-resistance to trace elements, and possible role in plant growth and mineral nutrition. International Journal of Phytoremediation 19:925−36

doi: 10.1080/15226514.2017.1303812
[63]

Estrada-de Los Santos P, Palmer M, Chávez-Ramírez B, Beukes C, Steenkamp ET, et al. 2018. Whole genome analyses suggests that Burkholderia sensu lato contains two additional novel genera (Mycetohabitans gen. nov., and Trinickia gen. nov. ): implications for the evolution of diazotrophy and nodulation in the Burkholderiaceae. Genes 9:389

doi: 10.3390/genes9080389
[64]

Deepika KV, Raghuram M, Kariali E, Bramhachari PV. 2016. Biological responses of symbiotic Rhizobium radiobacter strain VBCK1062 to the arsenic contaminated rhizosphere soils of mung bean. Ecotoxicology and Environmental Safety 134P1:1−10

doi: 10.1016/j.ecoenv.2016.08.008
[65]

Broos K, Uyttebroek M, Mertens J, Smolders E. 2004. A survey of symbiotic nitrogen fixation by white clover grown on metal contaminated soils. Soil Biology and Biochemistry 36:633−40

doi: 10.1016/j.soilbio.2003.11.007
[66]

Reichman SM. 2007. The potential use of the legume–rhizobium symbiosis for the remediation of arsenic contaminated sites. Soil Biology and Biochemistry 39:2587−93

doi: 10.1016/j.soilbio.2007.04.030
[67]

Pajuelo E, Rodríguez-Llorente ID, Dary M, Palomares AJ. 2008. Toxic effects of arsenic on Sinorhizobium-Medicago sativa symbiotic interaction. Environmental Pollution 154:203−11

doi: 10.1016/j.envpol.2007.10.015
[68]

Finnegan PM, Chen W. 2012. Arsenic toxicity: the effects on plant metabolism. Frontiers in Physiology 3:182

doi: 10.3389/fphys.2012.00182
[69]

Bustingorri C, Noriega G, Lavado RS, Balestrasse K. 2017. Protective effect exerted by soil phosphorus on soybean subjected to arsenic and fluoride. Redox Report 22:353−60

doi: 10.1080/13510002.2016.1276253