[1] |
Khush GS. 2001. Green revolution: the way forward. Nature Reviews Genetics 2:815−22 doi: 10.1038/35093585 |
[2] |
Li S, Tian Y, Wu K, Ye Y, Yu J, et al. 2018. Modulating plant growth-metabolism coordination for sustainable agriculture. Nature 560:595−600 doi: 10.1038/s41586-018-0415-5 |
[3] |
Wu K, Wang S, Song W, Zhang J, Wang Y, et al. 2020. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science 367:eaaz2046 doi: 10.1126/science.aaz2046 |
[4] |
Tong H, Chu C. 2018. Functional specificities of brassinosteroid and potential utilization for crop improvement. Trends in Plant Science 23:1016−28 doi: 10.1016/j.tplants.2018.08.007 |
[5] |
Xiong M, Feng G, Gao Q, Zhang C, Li Q, et al. 2022. Brassinosteroid regulation in rice seed biology. Seed Biology 1:2 doi: 10.48130/seedbio-2022-0002 |
[6] |
Cheng X, Xin M, Xu R, Chen Z, Cai W, et al. 2020. A single amino acid substitution in STKc_GSK3 kinase conferring semispherical grains and its implications for the origin of Triticum sphaerococcum. The Plant Cell 32:923−34 doi: 10.1105/tpc.19.00580 |
[7] |
Niu M, Wang H, Yin W, Meng W, Xiao Y, et al. 2022. Rice DWARF AND LOW-TILLERING and the homeodomain protein OSH15 interact to regulate internode elongation via orchestrating brassinosteroid signaling and metabolism. The Plant Cell 34:3754−72 doi: 10.1093/plcell/koac196 |
[8] |
Song L, Liu J, Cao B, Liu B, Zhang X, et al. 2023. Reducing brassinosteroid signalling enhances grain yield in semi-dwarf wheat. Nature (Accepted doi: 10.1038/s41586-023-06023-6 |
[9] |
Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, et al. 2006. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nature Biotechnology 24:105−9 doi: 10.1038/nbt1173 |
[10] |
Liu Y, Wang H, Jiang Z, Wang W, Xu R, et al. 2021. Genomic basis of geographical adaptation to soil nitrogen in rice. Nature 590:600−5 doi: 10.1038/s41586-020-03091-w |
[11] |
Xue C, Qiu F, Wang Y, Li B, Zhao KT, et al. 2023. Tuning plant phenotypes by precise, graded downregulation of gene expression. Nature Biotechnology (Accepted doi: 10.1038/s41587-023-01707-w |
[12] |
Tian J, Wang C, Xia J, Wu L, Xu G, et al. 2019. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science 365:658−64 doi: 10.1126/science.aax5482 |