[1] |
Dresselhaus T, Sprunck S, Wessel GM. 2016. Fertilization Mechanisms in Flowering Plants. Current Biology 26:R125−R139 doi: 10.1016/j.cub.2015.12.032 |
[2] |
Goldberg RB, de Paiva G, Yadegari R. 1994. Plant embryogenesis: zygote to seed. Science 266:605−14 doi: 10.1126/science.266.5185.605 |
[3] |
Raz V, Bergervoet JH, Koornneef M. 2001. Sequential steps for developmental arrest in Arabidopsis seeds. Development 128:243−52 doi: 10.1242/dev.128.2.243 |
[4] |
Kimata Y, Higaki T, Kawashima T, Kurihara D, Sato Y, et al. 2016. Cytoskeleton dynamics control the first asymmetric cell division in Arabidopsis zygote. PNAS 113:14157−62 doi: 10.1073/pnas.1613979113 |
[5] |
Zhao P, Zhou X, Shen K, Liu Z, Cheng T, et al. 2019. Two-step maternal-to-zygotic transition with two-phase parental genome contributions. Developmental Cell 49:882−893.e5 doi: 10.1016/j.devcel.2019.04.016 |
[6] |
Kimata Y, Kato T, Higaki T, Kurihara D, Yamada T, et al. 2019. Polar vacuolar distribution is essential for accurate asymmetric division of Arabidopsis zygotes. PNAS 116:2338−43 doi: 10.1073/pnas.1814160116 |
[7] |
Zhao P, Zhou X, Zhang L, Wang W, Ma L, et al. 2013. A bipartite molecular module controls cell death activation in the Basal cell lineage of plant embryos. PLoS Biology 11:e1001655 doi: 10.1371/journal.pbio.1001655 |
[8] |
Radoeva T, Vaddepalli P, Zhang Z, Weijers D. 2019. Evolution, Initiation, and Diversity in Early Plant Embryogenesis. Developmental Cell 50:533−43 doi: 10.1016/j.devcel.2019.07.011 |
[9] |
Schier AF. 2007. The maternal-zygotic transition: death and birth of RNAs. Science 316:406−7 doi: 10.1126/science.1140693 |
[10] |
Lee MT, Bonneau AR, Giraldez AJ. 2014. Zygotic genome activation during the maternal-to-zygotic transition. Annual Review of Cell and Developmental Biology 30:581−613 doi: 10.1146/annurev-cellbio-100913-013027 |
[11] |
Vielle-Calzada JP, Baskar R, Grossniklaus U. 2000. Delayed activation of the paternal genome during seed development. Nature 404:91−94 doi: 10.1038/35003595 |
[12] |
Weijers D, Geldner N, Offringa R, Jürgens G. 2001. Seed development - Early paternal gene activity in Arabidopsis. Nature 414:709−10 doi: 10.1038/414709a |
[13] |
Nodine MD, Bartel DP. 2012. Maternal and paternal genomes contribute equally to the transcriptome of early plant embryos. Nature 482:94−97 doi: 10.1038/nature10756 |
[14] |
Kao P, Nodine MD. 2019. Transcriptional activation of Arabidopsis zygotes is required for initial cell divisions. Scientific Reports 9:17159 doi: 10.1038/s41598-019-53704-2 |
[15] |
Zhang M, Wu H, Su J, Wang H, Zhu Q, et al. 2017. Maternal control of embryogenesis by MPK6 and its upstream MKK4/MKK5 in Arabidopsis. The Plant Journal 92:1005−19 doi: 10.1111/tpj.13737 |
[16] |
Lukowitz W, Roeder A, Parmenter D, Somerville C. 2004. A MAPKK kinase gene regulates extra-embryonic cell fate in Arabidopsis. Cell 116:109−19 doi: 10.1016/S0092-8674(03)01067-5 |
[17] |
Bayer M, Nawy T, Giglione C, Galli M, Meinnel T, Lukowitz W. 2009. Paternal control of embryonic patterning in Arabidopsis thaliana. Science 323:1485−88 doi: 10.1126/science.1167784 |
[18] |
Neu A, Eilbert E, Asseck LY, Slane D, Henschen A, et al. 2019. Constitutive signaling activity of a receptor-associated protein links fertilization with embryonic patterning in Arabidopsis thaliana. PNAS 116:5795−804 doi: 10.1073/pnas.1815866116 |
[19] |
Wang K, Chen H, Ortega-Perez M, Miao Y, Ma Y, et al. 2021. Independent parental contributions initiate zygote polarization in Arabidopsis thaliana. Current Biology 31:4810−4816.E5 doi: 10.1016/j.cub.2021.08.033 |
[20] |
Ueda M, Zhang Z, Laux T. 2011. Transcriptional activation of Arabidopsis axis patterning genes WOX8/9 links zygote polarity to embryo development. Developmental Cell 20:264−70 doi: 10.1016/j.devcel.2011.01.009 |
[21] |
Ueda M, Aichinger E, Gong W, Groot E, Verstraeten I, et al. 2017. Transcriptional integration of paternal and maternal factors in the Arabidopsis zygote. Genes & Development 31:617−27 doi: 10.1101/gad.292409.116 |
[22] |
Guo L, Jiang L, Zhang Y, Lu XL, Xie Q, et al. 2016. The anaphase-promoting complex initiates zygote division in Arabidopsis through degradation of cyclin B1. The Plant Journal 86:161−74 doi: 10.1111/tpj.13158 |
[23] |
Ronceret A, Gadea-Vacas J, Guilleminot J, Lincker F, Delorme V, et al. 2008. The first zygotic division in Arabidopsis requires de novo transcription of thymidylate kinase. The Plant Journal 53:776−89 doi: 10.1111/j.1365-313X.2007.03372.x |
[24] |
Wu JJ, Peng XB, Li WW, He R, Xin HP, Sun MX. 2012. Mitochondrial GCD1 dysfunction reveals reciprocal cell-to-cell signaling during the maturation of Arabidopsis female gametes. Developmental Cell 23:1043−58 doi: 10.1016/j.devcel.2012.09.011 |
[25] |
Xu J, Zhang HY, Xie CH, Xue HW, Dijkhuis P, et al. 2005. EMBRYONIC FACTOR 1 encodes an AMP deaminase and is essential for the zygote to embryo transition in Arabidopsis. The Plant Journal 42:743−56 doi: 10.1111/j.1365-313X.2005.02411.x |
[26] |
Yu D, Jiang L, Gong H, Liu CM. 2012. EMBRYONIC FACTOR 19 encodes a pentatricopeptide repeat protein that is essential for the initiation of zygotic embryogenesis in Arabidopsis. Journal of Integrative Plant Biology 54:55−64 doi: 10.1111/j.1744-7909.2011.01089.x |
[27] |
Yang KJ, Guo L, Hou XL, Gong HQ, Liu CM. 2017. ZYGOTE-ARREST 3 that encodes the tRNA ligase is essential for zygote division in Arabidopsis. Journal of Integrative Plant Biology 59:680−92 doi: 10.1111/jipb.12561 |
[28] |
Jeong S, Palmer TM, Lukowitz W. 2011. The RWP-RK factor GROUNDED promotes embryonic polarity by facilitating YODA MAP kinase signaling. Current Biology 21:1268−76 doi: 10.1016/j.cub.2011.06.049 |
[29] |
Waki T, Hiki T, Watanabe R, Hashimoto T, Nakajima K. 2011. The Arabidopsis RWP-RK protein RKD4 triggers gene expression and pattern formation in early embryogenesis. Current Biology 21:1277−81 doi: 10.1016/j.cub.2011.07.001 |
[30] |
Mayer U, Büttner G, Jürgens G. 1993. Apical-basal pattern formation in the Arabidopsis embryo: Studies on the role of the gnom gene. Development 117:149−62 doi: 10.1242/dev.117.1.149 |
[31] |
Yu TY, Shi DQ, Jia PF, Tang J, Li HJ, et al. 2016. The arabidopsis receptor kinase ZAR1 is required for zygote asymmetric division and its daughter cell fate. PLoS Genetics 12:e1005933 doi: 10.1371/journal.pgen.1005933 |
[32] |
Torres-Ruiz RA, Jürgens G. 1994. Mutations in the FASS gene uncouple pattern-formation and morphogenesis in Arabidopsis development. Development 120:2967−78 doi: 10.1242/dev.120.10.2967 |
[33] |
Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, et al. 2003. The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219−30 doi: 10.1016/S0092-8674(03)00003-5 |
[34] |
Ma L, Xin H, Qu L, Zhao J, Yang L, et al. 2011. Transcription profile analysis reveals that zygotic division results in uneven distribution of specific transcripts in apical/basal cells of tobacco. PLoS One 6:e15971 doi: 10.1371/journal.pone.0015971 |
[35] |
Haecker A, Gross-Hardt R, Geiges B, Sarkar A, Breuninger H, et al. 2004. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131:657−68 doi: 10.1242/dev.00963 |
[36] |
Weterings K, Apuya NR, Bi Y, Fischer RL, Harada JJ, Goldberg RB. 2001. Regional localization of suspensor mRNAs during early embryo development. The Plant Cell 13:2409−25 doi: 10.1105/tpc.010326 |
[37] |
Costa LM, Marshall E, Tesfaye M, Silverstein KAT, Mori M, et al. 2014. Central cell-derived peptides regulate early embryo patterning in flowering plants. Science 344:168−72 doi: 10.1126/science.1243005 |
[38] |
Robert HS, Park C, Gutièrrez CL, Wójcikowska B, Pěnčík A, et al. 2018. Maternal auxin supply contributes to early embryo patterning in Arabidopsis. Nature Plants 4:548−53 doi: 10.1038/s41477-018-0204-z |
[39] |
Breuninger H, Rikirsch E, Hermann M, Ueda M, Laux T. 2008. Differential expression of WOX genes mediates apical-basal axis formation in the Arabidopsis embryo. Developmental Cell 14:867−76 doi: 10.1016/j.devcel.2008.03.008 |
[40] |
Zhou X, Liu Z, Shen K, Zhao P, Sun MX. 2020. Cell lineage-specific transcriptome analysis for interpreting cell fate specification of proembryos. Nature Communications 11:1366 doi: 10.1038/s41467-020-15189-w |
[41] |
Jeong S, Palmer TM, Lukowitz W. 2011. The RWP-RK factor GROUNDED promotes embryonic polarity by facilitating YODA MAP kinase signaling. Current Biology 21:1268−76 doi: 10.1016/j.cub.2011.06.049 |
[42] |
Schwartz BW, Yeung EC, Meinke DW. 1994. Disruption of morphogenesis and transformation of the suspensor in abnormal suspensor mutants of Arabidopsis. Development 120:3235−45 doi: 10.1242/dev.120.11.3235 |
[43] |
Zhang JZ, Somerville CR. 1997. Suspensor-derived polyembryony caused by altered expression of valyl-tRNA synthetase in the twn2 mutant of Arabidopsis. PNAS 94:7349−55 doi: 10.1073/pnas.94.14.7349 |
[44] |
Yadegari R, Paiva G, Laux T, Koltunow AM, Apuya N, et al. 1994. Cell Differentiation and Morphogenesis Are Uncoupled in Arabidopsis raspberry Embryos. The Plant Cell 6:1713−29 doi: 10.2307/3869903 |
[45] |
Xie F, Yan H, Sun Y, Wang Y, Chen H, et al. 2018. RPL18aB helps maintain suspensor identity during early embryogenesis. Journal of Integrative Plant Biology 60:266−69 doi: 10.1111/jipb.12616 |
[46] |
Sanmartín M, Sauer M, Muñoz A, Zouhar J, Ordóñez A, et al. 2011. A molecular switch for initiating cell differentiation in Arabidopsis. Current Biology 21:999−1008 doi: 10.1016/j.cub.2011.04.041 |
[47] |
Radoeva T, Albrecht C, Piepers M, de Vries S, Weijers D. 2020. Suspensor-derived somatic embryogenesis in Arabidopsis. Development 147:dev188912 doi: 10.1242/dev.188912 |
[48] |
Liu Y, Li X, Zhao J, Tang X, Tian S, et al. 2015. Direct evidence that suspensor cells have embryogenic potential that is suppressed by the embryo proper during normal embryogenesis. PNAS 112:12432−37 doi: 10.1073/pnas.1508651112 |
[49] |
Gooh K, Ueda M, Aruga K, Park J, Arata H, et al. 2015. Live-cell imaging and optical manipulation of Arabidopsis early embryogenesis. Developmental Cell 34:242−51 doi: 10.1016/j.devcel.2015.06.008 |
[50] |
Rademacher EH, Lokerse AS, Schlereth A, Llavata-Peris CI, Bayer M, et al. 2012. Different Auxin Response Machineries Control Distinct Cell Fates in the Early Plant Embryo. Developmental Cell 22:211−22 doi: 10.1016/j.devcel.2011.10.026 |
[51] |
Radoeva T, Lokerse AS, Llavata-Peris CI, Wendrich JR, Xiang DQ, et al. 2019. A robust auxin response network controls embryo and suspensor development through a basic helix loop helix transcriptional module. The Plant Cell 31:52−67 doi: 10.1105/tpc.18.00518 |
[52] |
Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, et al. 2003. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147−53 doi: 10.1038/nature02085 |
[53] |
Autran D, Baroux C, Raissig MT, Lenormand T, Wittig M, et al. 2011. Maternal epigenetic pathways control parental contributions to Arabidopsis early embryogenesis. Cell 145:707−19 doi: 10.1016/j.cell.2011.04.014 |
[54] |
Schon MA, Nodine MD. 2017. Widespread contamination of Arabidopsis embryo and endosperm transcriptome data sets. The Plant Cell 29:608−17 doi: 10.1105/tpc.16.00845 |
[55] |
Baroux C, Autran D, Raissig MT, Grimanelli D, Grossniklaus U. 2013. Parental contributions to the transcriptome of early plant embryos. Current Opinion in Genetics & Development 23:72−74 doi: 10.1016/j.gde.2013.01.006 |
[56] |
Zhao P, Zhou X, Zheng Y, Ren Y, Sun MX. 2020. Equal parental contribution to the transcriptome is not equal control of embryogenesis. Nature Plants 6:1354−64 doi: 10.1038/s41477-020-00793-x |
[57] |
Muralla R, Lloyd J, Meinke D. 2011. Molecular foundations of reproductive lethality in Arabidopsis thaliana. PLoS One 6:e0028398 doi: 10.1371/journal.pone.0028398 |
[58] |
del Toro-De León G, García-Aguilar M, Gillmor CS. 2014. Non-equivalent contributions of maternal and paternal genomes to early plant embryogenesis. Nature 514:624−27 doi: 10.1038/nature13620 |
[59] |
Zhao P, Shi C, Wang L, Sun MX. 2022. The parental contributions to early plant embryogenesis and the concept of maternal-to-zygotic transition in plants. Current Opinion in Plant Biology 65:102144 doi: 10.1016/j.pbi.2021.102144 |
[60] |
Barton MK, Poethig RS. 1993. Formation of the shoot apical meristem in Arabidopsis thaliana: an analysis of development in the wild-type and in the shoot meristemless mutant. Development 119:823−31 doi: 10.1242/dev.119.3.823 |
[61] |
Mayer KFX, Schoof H, Haecker A, Lenhard M, Jürgens G, et al. 1998. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805−15 doi: 10.1016/S0092-8674(00)81703-1 |
[62] |
Yadav RK, Perales M, Gruel J, Girke T, Jönsson H, et al. 2011. WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes & Development 25:2025−30 doi: 10.1101/gad.17258511 |
[63] |
Schoof H, Lenhard M, Haecker A, Mayer KF, Jürgens G, et al. 2000. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635−44 doi: 10.1016/S0092-8674(00)80700-X |
[64] |
Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R. 2000. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289:617−19 doi: 10.1126/science.289.5479.617 |
[65] |
Long JA, Moan EI, Medford JI, Barton MK. 1996. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379:66−9 doi: 10.1038/379066a0 |
[66] |
Long JA, Barton MK. 1998. The development of apical embryonic pattern in Arabidopsis. Development 125:3027−35 doi: 10.1242/dev.125.16.3027 |
[67] |
Turchi L, Carabelli M, Ruzza V, Possenti M, Sassi M, et al. 2013. Arabidopsis HD-Zip II transcription factors control apical embryo development and meristem function. Development 140:2118−29 doi: 10.1242/dev.092833 |
[68] |
McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK. 2001. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411:709−13 doi: 10.1038/35079635 |
[69] |
Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, et al. 2003. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Current Biology 13:1768−74 doi: 10.1016/j.cub.2003.09.035 |
[70] |
Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, et al. 2005. Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. The Plant Cell 17:61−76 doi: 10.1105/tpc.104.026161 |
[71] |
Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang GL, Zamore PD, et al. 2004. MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5' region. The EMBO Journal 23:3356−64 doi: 10.1038/sj.emboj.7600340 |
[72] |
Zhu H, Hu F, Wang R, Zhou X, Sze SH, et al. 2011. Arabidopsis argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell 145:242−56 doi: 10.1016/j.cell.2011.03.024 |
[73] |
Yu Y, Ji LJ, Le BH, Zhai JX, Chen JY, et al. 2017. ARGONAUTE10 promotes the degradation of miR165/6 through the SDN1 and SDN2 exonucleases in Arabidopsis. PLoS Biology 15:e2001272 doi: 10.1371/journal.pbio.2001272 |
[74] |
Tucker MR, Hinze A, Tucker EJ, Takada S, Jürgens G, et al. 2008. Vascular signalling mediated by ZWILLE potentiates WUSCHEL function during shoot meristem stem cell development in the Arabidopsis embryo. Development 135:2839−43 doi: 10.1242/dev.023648 |
[75] |
Knauer S, Holt AL, Rubio-Somoza I, Tucker EJ, Hinze A, et al. 2013. A protodermal miR394 signal defines a region of stem cell competence in the Arabidopsis shoot meristem. Developmental Cell 24:125−32 doi: 10.1016/j.devcel.2012.12.009 |
[76] |
Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, et al. 2003. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591−602 doi: 10.1016/S0092-8674(03)00924-3 |
[77] |
Liu C, Xu Z, Chua NH. 1993. Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. The Plant Cell 5:621−30 doi: 10.2307/3869805 |
[78] |
Huang F, Kemel Zago M, Abas L, van Marion A, Galván-Ampudia CS, et al. 2010. Phosphorylation of conserved PIN motifs directs Arabidopsis PIN1 polarity and auxin transport. The Plant Cell 22:1129−42 doi: 10.1105/tpc.109.072678 |
[79] |
Michniewicz M, Zago MK, Abas L, Weijers D, Schweighofer A, et al. 2007. Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell 130:1044−56 doi: 10.1016/j.cell.2007.07.033 |
[80] |
Friml J, Yang X, Michniewicz M, Weijers D, Quint A, et al. 2004. A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306:862−65 doi: 10.1126/science.1100618 |
[81] |
Cheng Y, Qin G, Dai X, Zhao Y. 2008. NPY genes and AGC kinases define two key steps in auxin-mediated organogenesis in Arabidopsis. PNAS 105:21017−22 doi: 10.1073/pnas.0809761106 |
[82] |
Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M. 1997. Genes involved in organ separation in Arabidopsis: An analysis of the cup-shaped cotyledon mutant. The Plant Cell 9:841−57 doi: 10.1105/tpc.9.6.841 |
[83] |
Chandler JW, Cole M, Flier A, Grewe B, Werr W. 2007. The AP2 transcription factors DORNRÖSCHEN and DORNRÖSCHEN-LIKE redundantly control Arabidopsis embryo patterning via interaction with PHAVOLUTA. Development 134:1653−62 doi: 10.1242/dev.001016 |
[84] |
Cole M, Chandler J, Weijers D, Jacobs B, Comelli P, Werr W. 2009. DORNRÖSCHEN is a direct target of the auxin response factor MONOPTEROS in the Arabidopsis embryo. Development 136:1643−51 doi: 10.1242/dev.032177 |
[85] |
Xu TT, Ren SC, Song XF, Liu CM. 2015. CLE19 expressed in the embryo regulates both cotyledon establishment and endosperm development in Arabidopsis. Journal of experimental botany 66:5217−27 doi: 10.1093/jxb/erv293 |
[86] |
Long JA, Woody S, Poethig S, Meyerowitz EM, Barton MK. 2002. Transformation of shoots into roots in Arabidopsis embryos mutant at the TOPLESS locus. Development 129:2797−806 doi: 10.1242/dev.129.12.2797 |
[87] |
Long JA, Ohno C, Smith ZR, Meyerowitz EM. 2006. TOPLESS regulates apical embryonic fate in Arabidopsis. Science 312:1520−3 doi: 10.1126/science.1123841 |
[88] |
Hamann T, Benkova E, Bäurle I, Kientz M, Jürgens G. 2002. The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev 16:1610−5 doi: 10.1101/gad.229402 |
[89] |
Hamann T, Mayer U, Jürgens G. 1999. The auxin-insensitive bodenlos mutation affects primary root formation and apical-basal patterning in the Arabidopsis embryo. Development 126:1387−95 doi: 10.1242/dev.126.7.1387 |
[90] |
Hardtke CS, Berleth T. 1998. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. The EMBO Journal 17:1405−11 doi: 10.1093/emboj/17.5.1405 |
[91] |
Schlereth A, Möller B, Liu W, Kientz M, Flipse J, et al. 2010. MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature 464:913−16 doi: 10.1038/nature08836 |
[92] |
Rademacher EH, Möller B, Lokerse AS, Llavata-Peris CI, van den Berg W, et al. 2011. A cellular expression map of the Arabidopsis AUXIN RESPONSE FACTOR gene family. The Plant Journal 68:597−606 doi: 10.1111/j.1365-313X.2011.04710.x |
[93] |
Crawford BCW, Sewell J, Golembeski G, Roshan C, Long JA, et al. 2015. Genetic control of distal stem cell fate within root and embryonic meristems. Science 347:655−59 doi: 10.1126/science.aaa0196 |
[94] |
Du Y, Roldan MVG, Haraghi A, Haili N, Izhaq F, et al. 2022. Spatially expressed WIP genes control Arabidopsis embryonic root development. Nature Plants 8:635−45 doi: 10.1038/s41477-022-01172-4 |
[95] |
Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, et al. 2004. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119:109−20 doi: 10.1016/j.cell.2004.09.018 |
[96] |
Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou I, et al. 2007. PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449:1053−57 doi: 10.1038/nature06206 |
[97] |
Forzani C, Aichinger E, Sornay E, Willemsen V, Laux T, et al. 2014. WOX5 suppresses CYCLIN D activity to establish quiescence at the center of the root stem cell niche. Current Biology 24:1939−44 doi: 10.1016/j.cub.2014.07.019 |
[98] |
Tian H, Wabnik K, Niu T, Li H, Yu Q, et al. 2014. WOX5-IAA17 feedback circuit-mediated cellular auxin response is crucial for the patterning of root stem cell niches in Arabidopsis. Molecular Plant 7:277−89 doi: 10.1093/mp/sst118 |
[99] |
Pi L, Aichinger E, van der Graaff E, Llavata-Peris CI, Weijers D, et al. 2015. Organizer-derived WOX5 signal maintains root columella stem cells through chromatin-mediated repression of CDF4 expression. Developmental Cell 33:576−88 doi: 10.1016/j.devcel.2015.04.024 |
[100] |
ten Hove CA, Lu KJ, Weijers D. 2015. Building a plant: cell fate specification in the early Arabidopsis embryo. Development 142:420−30 doi: 10.1242/dev.111500 |
[101] |
Takada S, Jürgens G. 2007. Transcriptional regulation of epidermal cell fate in the Arabidopsis embryo. Development 134:1141−50 doi: 10.1242/dev.02803 |
[102] |
Ogawa E, Yamada Y, Sezaki N, Kosaka S, Kondo H, et al. 2015. ATML1 and PDF2 play a redundant and essential role in Arabidopsis embryo development. Plant and Cell Physiology 56:1183−92 doi: 10.1093/pcp/pcv045 |
[103] |
Johnson KL, Degnan KA, Ross Walker J, Ingram GC. 2005. AtDEK1 is essential for specification of embryonic epidermal cell fate. The Plant Journal 44:114−27 doi: 10.1111/j.1365-313X.2005.02514.x |
[104] |
Möller BK, ten Hove CA, Xiang D, Williams N, López LG, et al. 2017. Auxin response cell-autonomously controls ground tissue initiation in the early Arabidopsis embryo. PNAS 114:E2533−E2539 doi: 10.1073/pnas.1616493114 |
[105] |
Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, et al. 2000. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 101:555−67 doi: 10.1016/S0092-8674(00)80865-X |
[106] |
Sozzani R, Cui H, Moreno-Risueno MA, Busch W, Van Norman JM, et al. 2010. Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth. Nature 466:128−32 doi: 10.1038/nature09143 |
[107] |
Pernas M, Ryan E, Dolan L. 2010. SCHIZORIZA controls tissue system complexity in plants. Current Biology 20:818−23 doi: 10.1016/j.cub.2010.02.062 |
[108] |
Ren S, Song X, Chen W, Lu R, Lucas WJ, et al. 2019. CLE25 peptide regulates phloem initiation in Arabidopsis through a CLERK-CLV2 receptor complex. Journal of Integrative Plant Biology 61:1043−61 doi: 10.1111/jipb.12846 |
[109] |
de Rybel B, Möller B, Yoshida S, Grabowicz I, Barbier de Reuille P, et al. 2013. A bHLH complex controls embryonic vascular tissue establishment and indeterminate growth in Arabidopsis. Developmental Cell 24:426−37 doi: 10.1016/j.devcel.2012.12.013 |
[110] |
De Rybel B, Adibi M, Breda AS, Wendrich JR, Smit ME, et al. 2014. Integration of growth and patterning during vascular tissue formation in Arabidopsis. Science 345:1255215 doi: 10.1126/science.1255215 |
[111] |
Vera-Sirera F, De Rybel B, Úrbez C, Kouklas E, Pesquera M, et al. 2015. A bHLH-based feedback loop restricts vascular cell proliferation in plants. Developmental Cell 35:432−43 doi: 10.1016/j.devcel.2015.10.022 |
[112] |
Smit ME, Llavata-Peris CI, Roosjen M, van Beijnum H, Novikova D, et al. 2020. Specification and regulation of vascular tissue identity in the Arabidopsis embryo. Development 147:dev186130 doi: 10.1242/dev.186130 |
[113] |
Baud S, Dubreucq B, Miquel M, Rochat C, Lepiniec L. 2008. Storage reserve accumulation in Arabidopsis: metabolic and developmental control of seed filling. The Arabidopsis Book 6:e0113 doi: 10.1199/tab.0113 |
[114] |
Holdsworth MJ, Bentsink L, Soppe WJJ. 2008. Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytologist 179:33−54 doi: 10.1111/j.1469-8137.2008.02437.x |
[115] |
To A, Valon C, Savino G, Guilleminot J, Devic M, et al. 2006. A network of local and redundant gene regulation governs Arabidopsis seed maturation. The Plant Cell 18:1642−51 doi: 10.1105/tpc.105.039925 |
[116] |
Song J, Xie X, Chen C, Shu J, Thapa RK, et al. 2021. LEAFY COTYLEDON1 expression in the endosperm enables embryo maturation in Arabidopsis. Nature Communications 12:3963 doi: 10.1038/s41467-021-24234-1 |
[117] |
Kagaya Y, Toyoshima R, Okuda R, Usui H, Yamamoto A, et al. 2005. LEAFY COTYLEDON1 controls seed storage protein genes through its regulation of FUSCA3 and ABSCISIC ACID INSENSITIVE3. Plant and Cell Physiology 46:399−406 doi: 10.1093/pcp/pci048 |
[118] |
Ravi M, Chan SWL. 2010. Haploid plants produced by centromere-mediated genome elimination. Nature 464:615−18 doi: 10.1038/nature08842 |
[119] |
Cyprys P, Lindemeier M, Sprunck S. 2019. Gamete fusion is facilitated by two sperm cell-expressed DUF679 membrane proteins. Nature Plants 5:253−57 doi: 10.1038/s41477-019-0382-3 |
[120] |
Takahashi T, Mori T, Ueda K, Yamada L, Nagahara S, et al. 2018. The male gamete membrane protein DMP9/DAU2 is required for double fertilization in flowering plants. Development 145:dev170076 doi: 10.1242/dev.170076 |
[121] |
Zhong Y, Chen B, Li M, Wang D, Jiao Y, et al. 2020. A DMP-triggered in vivo maternal haploid induction system in the dicotyledonous Arabidopsis. Nature Plants 6:466−72 doi: 10.1038/s41477-020-0658-7 |
[122] |
Khanday I, Skinner D, Yang B, Mercier R, Sundaresan V. 2019. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature 565:91−95 doi: 10.1038/s41586-018-0785-8 |
[123] |
Chen B, Maas L, Figueiredo D, Zhong Y, Reis R, et al. 2022. BABY BOOM regulates early embryo and endosperm development. PNAS 119:e2201761119 doi: 10.1073/pnas.2201761119 |
[124] |
d'Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, et al. 2009. Turning Meiosis into Mitosis. PLoS Biology 7:e1000124 doi: 10.1371/journal.pbio.1000124 |
[125] |
Zhang X, Shi C, Li S, Zhang B, Luo P, et al. 2023. A female in vivo haploid-induction system via mutagenesis of egg cell-specific peptidases. Molecular Plant 16(2):471−80 doi: 10.1016/j.molp.2023.01.001 |
[126] |
Li J, Berger F. 2012. Endosperm: food for humankind and fodder for scientific discoveries. The New Phytologist 195:290−305 doi: 10.1111/j.1469-8137.2012.04182.x |
[127] |
Ingram GC. 2020. Family plot: the impact of the endosperm and other extra-embryonic seed tissues on angiosperm zygotic embryogenesis. F1000Research 9:18 doi: 10.12688/f1000research.21527.1 |
[128] |
Brown RC, Lemmon BE, Nguyen H, Olsen OA. 1999. Development of endosperm in Arabidopsis thaliana. Sexual Plant Reproduction 12:32−42 doi: 10.1007/s004970050169 |
[129] |
Boisnard-Lorig C, Colon-Carmona A, Bauch M, Hodge S, Doerner P, et al. 2001. Dynamic analyses of the expression of the HISTONE: YFP fusion protein in arabidopsis show that syncytial endosperm is divided in mitotic domains. The Plant Cell 13:495−509 doi: 10.1105/tpc.13.3.495 |
[130] |
Xiong H, Wang W, Sun MX. 2021. Endosperm development is an autonomously programmed process independent of embryogenesis. The Plant Cell 33:1151−60 doi: 10.1093/plcell/koab007 |
[131] |
Batista RA, Köhler C. 2020. Genomic imprinting in plants-revisiting existing models. Genes & Development 34:24−36 doi: 10.1101/gad.332924.119 |
[132] |
Bauer MJ, Fischer RL. 2011. Genome demethylation and imprinting in the endosperm. Current Opinion in Plant Biology 14:162−67 doi: 10.1016/j.pbi.2011.02.006 |
[133] |
Xu G, Zhang X. 2023. Mechanisms controlling seed size by early endosperm development. Seed Biology 2:1 doi: 10.48130/seedbio-2023-0001 |
[134] |
Faure JE, Rotman N, Fortuné P, Dumas C. 2002. Fertilization in Arabidopsis thaliana wild type: developmental stages and time course. The Plant Journal 30:481−88 doi: 10.1046/j.1365-313X.2002.01305.x |
[135] |
Chaudhury AM, Luo M, Miller C, Craig S, Dennis ES, et al. 1997. Fertilization-independent seed development in Arabidopsis thaliana. PNAS 94:4223−28 doi: 10.1073/pnas.94.8.4223 |
[136] |
Ohad N, Margossian L, Hsu YC, Williams C, Repetti P, et al. 1996. A mutation that allows endosperm development without fertilization. PNAS 93:5319−24 doi: 10.1073/pnas.93.11.5319 |
[137] |
Francis NJ, Saurin AJ, Shao Z, Kingston RE. 2001. Reconstitution of a functional core polycomb repressive complex. Molecular Cell 8:545−56 doi: 10.1016/S1097-2765(01)00316-1 |
[138] |
Schuettengruber B, Cavalli G. 2009. Recruitment of Polycomb group complexes and their role in the dynamic regulation of cell fate choice. Development 136:3531−42 doi: 10.1242/dev.033902 |
[139] |
Grossniklaus U, Vielle-Calzada JP, Hoeppner MA, Gagliano WB. 1998. Maternal control of embryogenesis by MEDEA, a Polycomb group gene inArabidopsis. Science 280:446−50 doi: 10.1126/science.280.5362.446 |
[140] |
Kiyosue T, Ohad N, Yadegari R, Hannon M, Dinneny J, et al. 1999. Control of fertilization-independent endosperm development by the MEDEA polycomb gene in Arabidopsis. PNAS 96:4186−91 doi: 10.1073/pnas.96.7.4186 |
[141] |
Luo M, Bilodeau P, Koltunow A, Dennis ES, Peacock WJ, et al. 1999. Genes controlling fertilization-independent seed development in Arabidopsis thaliana. PNAS 96:296−301 doi: 10.1073/pnas.96.1.296 |
[142] |
Ohad N, Yadegari R, Margossian L, Hannon M, Michaeli D, et al. 1999. Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization. The Plant Cell 11:407−15 doi: 10.1105/tpc.11.3.407 |
[143] |
Reyes JC, Grossniklaus U. 2003. Diverse functions of Polycomb group proteins during plant development. Seminars in Cell & Developmental Biology 14:77−84 doi: 10.1016/S1084-9521(02)00139-8 |
[144] |
Guitton AE, Page DR, Chambrier P, Lionnet C, Faure JE, et al. 2004. Identification of new members of Fertilisation Independent Seed Polycomb Group pathway involved in the control of seed development in Arabidopsis thaliana. Development 131:2971−81 doi: 10.1242/dev.01168 |
[145] |
Figueiredo DD, Batista RA, Roszak PJ, Köhler C. 2015. Auxin production couples endosperm development to fertilization. Nature Plants 1:15184 doi: 10.1038/nplants.2015.184 |
[146] |
Kang IH, Steffen JG, Portereiko MF, Lloyd A, Drews GN. 2008. The AGL62 MADS domain protein regulates cellularization during endosperm development in Arabidopsis. The Plant Cell 20:635−47 doi: 10.1105/tpc.107.055137 |
[147] |
Johnston AJ, Matveeva E, Kirioukhova O, Grossniklaus U, Gruissem W. 2008. A dynamic reciprocal RBR-PRC2 regulatory circuit controls Arabidopsis gametophyte development. Current Biology 18:1680−86 doi: 10.1016/j.cub.2008.09.026 |
[148] |
Gutzat R, Borghi L, Gruissem W. 2012. Emerging roles of RETINOBLASTOMA-RELATED proteins in evolution and plant development. Trends in Plant Science 17:139−48 doi: 10.1016/j.tplants.2011.12.001 |
[149] |
Giacinti C, Giordano A. 2006. RB and cell cycle progression. Oncogene 25:5220−7 doi: 10.1038/sj.onc.1209615 |
[150] |
Magyar Z, Horváth B, Khan S, Mohammed B, Henriques R, et al. 2012. Arabidopsis E2FA stimulates proliferation and endocycle separately through RBR-bound and RBR-free complexes. The EMBO Journal 31:1480−93 doi: 10.1038/emboj.2012.13 |
[151] |
Kuwabara A, Gruissem W. 2014. Arabidopsis Retinoblastoma-related and Polycomb group proteins: cooperation during plant cell differentiation and development. Journal of Experimental Botany 65:2667−76 doi: 10.1093/jxb/eru069 |
[152] |
Collins C, Dewitte W, Murray JAH. 2012. D-type cyclins control cell division and developmental rate during Arabidopsis seed development. Journal of Experimental Botany 63:3571−86 doi: 10.1093/jxb/ers015 |
[153] |
Sornay E, Forzani C, Forero-Vargas M, Dewitte W, Murray JAH. 2015. Activation of CYCD7;1 in the central cell and early endosperm overcomes cell-cycle arrest in the Arabidopsis female gametophyte, and promotes early endosperm and embryo development. The Plant Journal 84:41−55 doi: 10.1111/tpj.12957 |
[154] |
Mosquna A, Katz A, Shochat S, Grafi G, Ohad N. 2004. Interaction of FIE, a polycomb protein, with pRb: a possible mechanism regulating endosperm development. Molecular Genetics and Genomics 271:651−57 doi: 10.1007/s00438-004-1024-6 |
[155] |
Jullien PE, Mosquna A, Ingouff M, Sakata T, Ohad N, et al. 2008. Retinoblastoma and its binding partner MSI1 control imprinting in Arabidopsis. PLoS Biology 6:e0060194 doi: 10.1371/journal.pbio.0060194 |
[156] |
Soppe WJJ, Jasencakova Z, Houben A, Kakutani T, Meister A, et al. 2002. DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis. The EMBO Journal 21:6549−59 doi: 10.1093/emboj/cdf657 |
[157] |
Finnegan EJ, Peacock WJ, Dennis ES. 1996. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. PNAS 93:8449−54 doi: 10.1073/pnas.93.16.8449 |
[158] |
Jullien PE, Kinoshita T, Ohad N, Berger F. 2006. Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting. The Plant Cell 18:1360−72 doi: 10.1105/tpc.106.041178 |
[159] |
Mori T, Kuroiwa H, Higashiyama T, Kuroiwa T. 2006. GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization. Nature Cell Biology 8:64−71 doi: 10.1038/ncb1345 |
[160] |
von Besser K, Frank AC, Johnson MA, Preuss D. 2006. Arabidopsis HAP2 (GCS1) is a sperm-specific gene required for pollen tube guidance and fertilization. Development 133:4761−69 doi: 10.1242/dev.02683 |
[161] |
Mori T, Igawa T, Tamiya G, Miyagishima SY, Berger F. 2014. Gamete attachment requires GEX2 for successful fertilization in Arabidopsis. Current Biology 24:170−75 doi: 10.1016/j.cub.2013.11.030 |
[162] |
Iwakawa H, Shinmyo A, Sekine M. 2006. Arabidopsis CDKA;1, a cdc2 homologue, controls proliferation of generative cells in male gametogenesis. The Plant Journal 45:819−31 doi: 10.1111/j.1365-313X.2005.02643.x |
[163] |
Nowack MK, Grini PE, Jakoby MJ, Lafos M, Koncz C, et al. 2006. A positive signal from the fertilization of the egg cell sets off endosperm proliferation in angiosperm embryogenesis. Nature Genetics 38:63−67 doi: 10.1038/ng1694 |
[164] |
Frank AC, Johnson MA. 2009. Expressing the diphtheria toxin a subunit from the HAP2(GCS1) promoter blocks sperm maturation and produces single sperm-like cells capable of fertilization. Plant Physiology 151:1390−400 doi: 10.1104/pp.109.144204 |
[165] |
Chen Z, Tan JL, Ingouff M, Sundaresan V, Berger F. 2008. Chromatin assembly factor 1 regulates the cell cycle but not cell fate during male gametogenesis in Arabidopsis thaliana. Development 135:65−73 doi: 10.1242/dev.010108 |
[166] |
Aw SJ, Hamamura Y, Chen Z, Schnittger A, Berger F. 2010. Sperm entry is sufficient to trigger division of the central cell but the paternal genome is required for endosperm development in Arabidopsis. Development 137:2683−90 doi: 10.1242/dev.052928 |
[167] |
Zhao Y, Wang S, Wu W, Li L, Jiang T, et al. 2018. Clearance of maternal barriers by paternal miR159 to initiate endosperm nuclear division in Arabidopsis. Nature Communications 9:5011 doi: 10.1038/s41467-018-07429-x |
[168] |
Rogers K, Chen X. 2013. Biogenesis, Turnover, and Mode of Action of Plant MicroRNAs. The Plant Cell 25:2383−99 doi: 10.1105/tpc.113.113159 |
[169] |
Borges F, Pereira PA, Slotkin RK, Martienssen RA, Becker JD. 2011. MicroRNA activity in the Arabidopsis male germline. Journal of Experimental Botany 62:1611−20 doi: 10.1093/jxb/erq452 |
[170] |
Jones-Rhoades MW, Bartel DP. 2004. Computational identification of plant MicroRNAs and their targets, including a stress-induced miRNA. Molecular Cell 14:787−99 doi: 10.1016/j.molcel.2004.05.027 |
[171] |
Allen RS, Li J, Stahle MI, Dubroué A, Gubler F, et al. 2007. Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. PNAS 104:16371−76 doi: 10.1073/pnas.0707653104 |
[172] |
Millar AA, Gubler F. 2005. The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are MicroRNA-regulated genes that redundantly facilitate anther development. The Plant Cell 17:705−21 doi: 10.1105/tpc.104.027920 |
[173] |
Ali MF, Shin JM, Fatema U, Kurihara D, Berger F, et al. 2023. Cellular dynamics of coenocytic endosperm development in Arabidopsis thaliana. Nature Plants 9:330−42 doi: 10.1038/s41477-022-01331-7 |
[174] |
Day RC, Herridge RP, Ambrose BA, Macknight RC. 2008. Transcriptome analysis of proliferating Arabidopsis endosperm reveals biological implications for the control of syncytial division, cytokinin signaling, and gene expression regulation. Plant Physiology 148:1964−84 doi: 10.1104/pp.108.128108 |
[175] |
Romeiro Motta M, Zhao X, Pastuglia M, Belcram K, Roodbarkelari F, et al. 2022. B1-type cyclins control microtubule organization during cell division in Arabidopsis. EMBO Reports 23:e53995 doi: 10.15252/embr.202153995 |
[176] |
Guo L, Jiang L, Zhang Y, Lu XL, Xie Q, et al. 2016. The anaphase-promoting complex initiates zygote division in Arabidopsis through degradation of cyclin B1. The Plant Journal 86:161−74 doi: 10.1111/tpj.13158 |
[177] |
Guo L, Jiang L, Lu XL, Liu CM. 2018. ANAPHASE PROMOTING COMPLEX/CYCLOSOME-mediated cyclin B1 degradation is critical for cell cycle synchronization in syncytial endosperms. Journal of Integrative Plant Biology 60:448−54 doi: 10.1111/jipb.12641 |
[178] |
Aslam M, Huang XY, Yan MK, She ZY, Lu XY, et al. 2022. TRM61 is essential for Arabidopsis embryo and endosperm development. Plant Reproduction 35:31−46 doi: 10.1007/s00497-021-00428-x |
[179] |
Qian J, Chen Y, Hu Y, Deng Y, Liu Y, et al. 2018. Arabidopsis replication factor C4 is critical for DNA replication during the mitotic cell cycle. The Plant Journal 94:288−303 doi: 10.1111/tpj.13855 |
[180] |
Tang J, Jia P, Xin P, Chu J, Shi DQ, et al. 2020. The Arabidopsis TRM61/TRM6 complex is a bona fide tRNA N1-methyladenosine methyltransferase. Journal of Experimental Botany 71:3024−36 doi: 10.1093/jxb/eraa100 |
[181] |
Cullmann G, Fien K, Kobayashi R, Stillman B. 1995. Characterization of the five replication factor C genes of Saccharomyces cerevisiae. Molecular and Cellular Biology 15:4661−71 doi: 10.1128/MCB.15.9.4661 |
[182] |
Strunnikov AV, Hogan E, Koshland D. 1995. SMC2, a Saccharomyces cerevisiae gene essential for chromosome segregation and condensation, defines a subgroup within the SMC family. Genes & Development 9:587−99 doi: 10.1101/gad.9.5.587 |
[183] |
Liu CM, McElver J, Tzafrir I, Joosen R, Wittich P, et al. 2002. Condensin and cohesin knockouts in Arabidopsis exhibit a titan seed phenotype. The Plant Journal 29:405−15 doi: 10.1046/j.1365-313x.2002.01224.x |
[184] |
Liu CM, Meinke DW. 1998. The titan mutants of Arabidopsis are disrupted in mitosis and cell cycle control during seed development. The Plant Journal 16:21−31 doi: 10.1046/j.1365-313x.1998.00268.x |
[185] |
Tzafrir I, McElver JA, Liu CM, Yang LJ, Wu JQ, et al. 2002. Diversity of TITAN functions in Arabidopsis seed development. Plant Physiology 128:38−51 doi: 10.1104/pp.010911 |
[186] |
Steinborn K, Maulbetsch C, Priester B, Trautmann S, Pacher T, et al. 2002. The Arabidopsis PILZ group genes encode tubulin-folding cofactor orthologs required for cell division but not cell growth. Genes & Development 16:959−71 doi: 10.1101/gad.221702 |
[187] |
Beghin A, Galmarini CM, Dumontet C. 2007. Tubulin folding pathways: implication in the regulation of microtubule dynamics. Current Cancer Drug Targets 7:697−703 doi: 10.2174/156800907783220426 |
[188] |
Tian J, Kong Z. 2019. The role of the augmin complex in establishing microtubule arrays. Journal of Experimental Botany 70:3035−41 doi: 10.1093/jxb/erz123 |
[189] |
Lee YJ, Hiwatashi Y, Hotta T, Xie T, Doonan JH, Liu B. 2017. The mitotic function of augmin is dependent on its microtubule-associated protein subunit EDE1 in Arabidopsis thaliana. Current Biology 27:3891−3897.E4 doi: 10.1016/j.cub.2017.11.030 |
[190] |
Pignocchi C, Minns GE, Nesi N, Koumproglou R, Kitsios G, et al. 2009. ENDOSPERM DEFECTIVE1 is a novel microtubule-associated protein essential for seed development in Arabidopsis. The Plant Cell 21:90−105 doi: 10.1105/tpc.108.061812 |
[191] |
Fiume E, Fletcher JC. 2012. Regulation of Arabidopsis embryo and endosperm development by the polypeptide signaling molecule CLE8. The Plant cell 24:1000−12 doi: 10.1105/tpc.111.094839 |
[192] |
Reichardt I, Stierhof YD, Mayer U, Richter S, Schwarz H, et al. 2007. Plant cytokinesis requires de novo secretory trafficking but not endocytosis. Current Biology 17:2047−53 doi: 10.1016/j.cub.2007.10.040 |
[193] |
Otegui MS, Mastronarde DN, Kang BH, Bednarek SY, Staehelin LA. 2001. Three-dimensional analysis of syncytial-type cell plates during endosperm cellularization visualized by high resolution electron tomography. The Plant Cell 13:2033−51 doi: 10.1105/tpc.13.9.2033 |
[194] |
Otegui M, Staehelin LA. 2000. Syncytial-type cell plates: a novel kind of cell plate involved in endosperm cellularization of Arabidopsis. The Plant Cell 12:933−47 doi: 10.1105/tpc.12.6.933 |
[195] |
Sørensen MB, Mayer U, Lukowitz W, Robert H, Chambrier P, et al. 2002. Cellularisation in the endosperm of Arabidopsis thaliana is coupled to mitosis and shares multiple components with cytokinesis. Development 129:5567−76 doi: 10.1242/dev.00152 |
[196] |
Garcia D, Saingery V, Chambrier P, Mayer U, Jürgens G, et al. 2003. Arabidopsis haiku mutants reveal new controls of seed size by endosperm. Plant Physiology 131:1661−70 doi: 10.1104/pp.102.018762 |
[197] |
Hehenberger E, Kradolfer D, Köhler C. 2012. Endosperm cellularization defines an important developmental transition for embryo development. Development 139:2031−39 doi: 10.1242/dev.077057 |
[198] |
Wang J, Xue X, Ren H. 2012. New insights into the role of plant formins: regulating the organization of the actin and microtubule cytoskeleton. Protoplasma 249:101−7 doi: 10.1007/s00709-011-0368-0 |
[199] |
Ingouff M, Fitz Gerald JN, Guérin C, Robert H, Sørensen MB, et al. 2005. Plant formin AtFH5 is an evolutionarily conserved actin nucleator involved in cytokinesis. Nature Cell Biology 7:374−80 doi: 10.1038/ncb1238 |
[200] |
Liu C, Zhang Y, Ren H. 2018. Actin polymerization mediated by AtFH5 directs the polarity establishment and vesicle trafficking for pollen germination in Arabidopsis. Molecular Plant 11:1389−99 doi: 10.1016/j.molp.2018.09.004 |
[201] |
Lukowitz W, Mayer U, Jürgens G. 1996. Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product. Cell 84:61−71 doi: 10.1016/S0092-8674(00)80993-9 |
[202] |
Lauber MH, Waizenegger I, Steinmann T, Schwarz H, Mayer U, et al. 1997. The Arabidopsis KNOLLE protein is a cytokinesis-specific syntaxin. The Journal of Cell Biology 139:1485−93 doi: 10.1083/jcb.139.6.1485 |
[203] |
Strompen G, El Kasmi F, Richter S, Lukowitz W, Assaad FF, et al. 2002. The Arabidopsis HINKEL gene encodes a kinesin-related protein involved in cytokinesis and is expressed in a cell cycle-dependent manner. Current Biology 12:153−58 doi: 10.1016/S0960-9822(01)00655-8 |
[204] |
Erilova A, Brownfield L, Exner V, Rosa M, Twell D, et al. 2009. Imprinting of the polycomb group gene MEDEA serves as a ploidy sensor in Arabidopsis. PLoS Genetics 5:e1000663 doi: 10.1371/journal.pgen.1000663 |
[205] |
Kradolfer D, Hennig L, Köhler C. 2013. Increased maternal genome dosage bypasses the requirement of the FIS polycomb repressive complex 2 in Arabidopsis seed development. PLoS Genetics 9:e1003163 doi: 10.1371/journal.pgen.1003163 |
[206] |
Guo L, Luo X, Li M, Joldersma D, Plunkert M, et al. 2022. Mechanism of fertilization-induced auxin synthesis in the endosperm for seed and fruit development. Nature Communications 13:3985 doi: 10.1038/s41467-022-31656-y |
[207] |
Luo M, Dennis ES, Berger F, Peacock WJ, Chaudhury A. 2005. MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. PNAS 102:17531−6 doi: 10.1073/pnas.0508418102 |
[208] |
Wang A, Garcia D, Zhang H, Feng K, Chaudhury A, et al. 2010. The VQ motif protein IKU1 regulates endosperm growth and seed size in Arabidopsis. The Plant Journal 63:670−9 doi: 10.1111/j.1365-313X.2010.04271.x |
[209] |
Zhou Y, Zhang X, Kang X, Zhao X, Zhang X, et al. 2009. SHORT HYPOCOTYL UNDER BLUE1 associates with MINISEED3 and HAIKU2 promoters in vivo to regulate Arabidopsis seed development. The Plant cell 21:106−17 doi: 10.1105/tpc.108.064972 |
[210] |
Kang X, Li W, Zhou Y, Ni M. 2013. A WRKY transcription factor recruits the SYG1-like protein SHB1 to activate gene expression and seed cavity enlargement. PLoS Genetics 9:e1003347 doi: 10.1371/journal.pgen.1003347 |
[211] |
Xi X, Hu Z, Nie X, Meng M, Xu H, et al. 2021. Cross inhibition of MPK10 and WRKY10 participating in the growth of endosperm in Arabidopsis thaliana. Frontiers in Plant Science 12:640346 doi: 10.3389/fpls.2021.640346 |
[212] |
Wu D, Wei YM, Zhao XY, Li BK, Zhang HK, et al. 2022. Ancestral function but divergent epigenetic regulation of HAIKU2 reveals routes of seed developmental evolution. Molecular Plant 15:1575−89 doi: 10.1016/j.molp.2022.09.002 |
[213] |
Cheng ZJ, Zhao XY, Shao XX, Wang F, Zhou C, et al. 2014. Abscisic acid regulates early seed development in Arabidopsis by ABI5-mediated transcription of SHORT HYPOCOTYL UNDER BLUE1. The Plant Cell 26:1053−68 doi: 10.1105/tpc.113.121566 |
[214] |
González-Guzmán M, Apostolova N, Bellés JM, Barrero JM, Piqueras P, et al. 2002. The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell 14:1833−46 doi: 10.1105/tpc.002477 |
[215] |
Zhang B, Li C, Li Y, Yu H. 2020. Mobile TERMINAL FLOWER1 determines seed size in Arabidopsis. Nature Plants 6:1146−57 doi: 10.1038/s41477-020-0749-5 |
[216] |
Liu P, Qi M, Wang Y, Chang M, Liu C, et al. 2014. Arabidopsis RAN1 mediates seed development through its parental ratio by affecting the onset of endosperm cellularization. Molecular Plant 7:1316−28 doi: 10.1093/mp/ssu041 |
[217] |
Jiang WB, Huang HY, Hu YW, Zhu SW, Wang ZY, Lin WH. 2013. Brassinosteroid regulates seed size and shape in Arabidopsis. Plant Physiology 162:1965−77 doi: 10.1104/pp.113.217703 |
[218] |
Ohto MA, Floyd SK, Fischer RL, Goldberg RB, Harada JJ. 2009. Effects of APETALA2 on embryo, endosperm, and seed coat development determine seed size in Arabidopsis. Sexual Plant Reproduction 22:277−89 doi: 10.1007/s00497-009-0116-1 |
[219] |
Li J, Nie X, Tan JLH, Berger F. 2013. Integration of epigenetic and genetic controls of seed size by cytokinin in Arabidopsis. PNAS 110:15479−84 doi: 10.1073/pnas.1305175110 |
[220] |
Yang S, Johnston N, Talideh E, Mitchell S, Jeffree C, et al. 2008. The endosperm-specific ZHOUPI gene of Arabidopsis thaliana regulates endosperm breakdown and embryonic epidermal development. Development 135:3501−9 doi: 10.1242/dev.026708 |
[221] |
Kondou Y, Nakazawa M, Kawashima M, Ichikawa T, Yoshizumi T, et al. 2008. RETARDED GROWTH OF EMBRYO1, a new basic helix-loop-helix protein, expresses in endosperm to control embryo growth. Plant Physiology 147:1924−35 doi: 10.1104/pp.108.118364 |
[222] |
Xing Q, Creff A, Waters A, Tanaka H, Goodrich J, Ingram GC. 2013. ZHOUPI controls embryonic cuticle formation via a signalling pathway involving the subtilisin protease ABNORMAL LEAF-SHAPE1 and the receptor kinases GASSHO1 and GASSHO2. Development 140:770−9 doi: 10.1242/dev.088898 |
[223] |
Grimault A, Gendrot G, Chamot S, Widiez T, Rabillé H, et al. 2015. ZmZHOUPI, an endosperm-specific basic helix-loop-helix transcription factor involved in maize seed development. The Plant Journal 84:574−86 doi: 10.1111/tpj.13024 |
[224] |
Dou M, Zhang Y, Yang S, Feng X. 2018. Identification of ZHOUPI Orthologs in Rice Involved in Endosperm Development and Cuticle Formation. Frontiers in Plant Science 9:223 doi: 10.3389/fpls.2018.00223 |
[225] |
Zhang Y, Li X, Yang S, Feng X. 2017. Identification of ZOUPI orthologs in soybean potentially involved in endosperm breakdown and embryogenic development. Frontiers in Plant Science 8:139 doi: 10.3389/fpls.2017.00139 |
[226] |
Denay G, Creff A, Moussu S, Wagnon P, Thévenin J, et al. 2014. Endosperm breakdown in Arabidopsis requires heterodimers of the basic helix-loop-helix proteins ZHOUPI and INDUCER OF CBP EXPRESSION 1. Development 141:1222−27 doi: 10.1242/dev.103531 |
[227] |
Fourquin C, Beauzamy L, Chamot S, Creff A, Goodrich J, et al. 2016. Mechanical stress mediated by both endosperm softening and embryo growth underlies endosperm elimination in Arabidopsis seeds. Development 143:3300−5 doi: 10.1242/dev.137224 |
[228] |
Buono RA, Hudecek R, Nowack MK. 2019. Plant proteases during developmental programmed cell death. Journal of Experimental Botany 70:2097−112 doi: 10.1093/jxb/erz072 |
[229] |
Doll NM, Royek S, Fujita S, Okuda S, Chamot S, et al. 2020. A two-way molecular dialogue between embryo and endosperm is required for seed development. Science 367:431−35 doi: 10.1126/science.aaz4131 |
[230] |
Schneitz K, Hülskamp M, Pruitt RE. 1995. Wild-type ovule development in Arabidopsis thaliana: a light microscope study of cleared whole-mount tissue. The Plant Journal 7:731−749 doi: 10.1046/j.1365-313X.1995.07050731.x |
[231] |
Debeaujon I, Lepiniec L, Pourcel L, Routaboul JM. 2007. Seed coat development and dormancy. In Seed Development, Dormancy and Germination, ed. Bradford K, Nonogaki H. Oxford, UK: Blackwell Publishing. pp. 25–43. https://doi.org/10.1002/9780470988848 |
[232] |
Haughn G, Chaudhury A. 2005. Genetic analysis of seed coat development in Arabidopsis. Trends in Plant Science 10(10):472−77 doi: 10.1016/j.tplants.2005.08.005 |
[233] |
Windsor JB, Symonds VV, Mendenhall J, Lloyd AM. 2000. Arabidopsis seed coat development: morphological differentiation of the outer integument. The Plant Journal 22(6):483−93 doi: 10.1046/j.1365-313x.2000.00756.x |
[234] |
Coen O, Lu J, Xu W, Pateyron S, Grain D, et al. 2020. A TRANSPARENT TESTA transcriptional module regulates endothelium polarity. Frontiers in Plant Science 10:1801 doi: 10.3389/fpls.2019.01801 |
[235] |
Debeaujon I, Nesi N, Perez P, Devic M, Grandjean O, et al. 2003. Proanthocyanidin-accumulating cells in Arabidopsis testa: regulation of differentiation and role in seed development. The Plant Cell 15:2514−31 doi: 10.1105/tpc.014043 |
[236] |
Beeckman T, De Rycke R, Viane R, Inzé D. 2000. Histological study of seed coat development in Arabidopsis thaliana. Journal of Plant Research 113:139−48 doi: 10.1007/PL00013924 |
[237] |
Coen O, Lu J, Xu W, De Vos D, Péchoux C, et al. 2019. Deposition of a cutin apoplastic barrier separating seed maternal and zygotic tissues. BMC Plant Biology 19:304 doi: 10.1186/s12870-019-1877-9 |
[238] |
Nakaune S, Yamada K, Kondo M, Kato T, Tabata S, et al. 2005. A vacuolar processing enzyme, ΔVPE, is involved in seed coat formation at the early stage of seed development. The Plant Cell 17(3):876−87 doi: 10.1105/tpc.104.026872 |
[239] |
Kunieda T, Mitsuda N, Ohme-Takagi M, Takeda S, Aida M, et al. 2008. NAC family proteins NARS1/NAC2 and NARS2/NAM in the outer integument regulate embryogenesis in Arabidopsis. The Plant Cell 20(10):2631−42 doi: 10.1105/tpc.108.060160 |
[240] |
Francoz E, Ranocha P, Burlat V, Dunand C. 2015. Arabidopsis seed mucilage secretory cells: regulation and dynamics. Trends in Plant Science 20(8):515−24 doi: 10.1016/j.tplants.2015.04.008 |
[241] |
Debeaujon I, Léon-Kloosterziel KM, Koornneef M. 2000. Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiology 122(2):403−14 doi: 10.1104/pp.122.2.403 |
[242] |
Koornneef M. 1990. Mutations affecting the testa color in Arabidopsis. Arabidopsis Inf. Services. 27:1–4 |
[243] |
Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, Pourcel L, Nesi N, Caboche M. 2006. Genetics and biochemistry of seed flavonoids. Annual Review of Plant Biology 57:405−30 doi: 10.1146/annurev.arplant.57.032905.105252 |
[244] |
Nesi N, Debeaujon I, Jond C, Stewart AJ, Jenkins GI, et al. 2002. The TRANSPARENT TESTA16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat. The Plant Cell 14(10):2463−79 doi: 10.1105/tpc.004127 |
[245] |
Coen O, Fiume E, Xu W, De Vos D, Lu J, et al. 2017. Developmental patterning of the sub-epidermal integument cell layer in Arabidopsis seeds. Development 144(8):1490−97 doi: 10.1242/dev.146274 |
[246] |
Sagasser M, Lu GH, Hahlbrock K, Weisshaar B. 2002. A. thaliana TRANSPARENT TESTA 1 is involved in seed coat development and defines the WIP subfamily of plant zinc finger proteins. Genes & Development 16:138−49 doi: 10.1101/gad.212702 |
[247] |
Nesi N, Jond C, Debeaujon I, Caboche M, Lepiniec L. 2001. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. The Plant Cell 13(9):2099−114 doi: 10.1105/TPC.010098 |
[248] |
Albert S, Delseny M, Devic M. 1997. BANYULS, a novel negative regulator of flavonoid biosynthesis in the Arabidopsis seed coat. The Plant Journal 11(2):289−99 doi: 10.1046/j.1365-313X.1997.11020289.x |
[249] |
Devic M, Guilleminot J, Debeaujon I, Bechtold N, Bensaude E, et al. 1999. The BANYULS gene encodes a DFR-like protein and is a marker of early seed coat development. The Plant Journal 19(4):387−98 doi: 10.1046/j.1365-313X.1999.00529.x |
[250] |
Xie DY, Sharma SB, Paiva NL, Ferreira D, Dixon RA. 2003. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299(5605):396−99 doi: 10.1126/science.1078540 |
[251] |
Marinova K, Pourcel L, Weder B, Schwarz M, Barron D, et al. 2007. The Arabidopsis MATE transporter TT12 acts as a vacuolar flavonoid/H+-antiporter active in proanthocyanidin-accumulating cells of the seed coat. Plant Cell. 19(6):2023−38 doi: 10.1105/tpc.106.046029 |
[252] |
Debeaujon I, Peeters AJM, Léon-Kloosterziel KM, Koornneef M. 2001. The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. The Plant Cell 13:853−71 doi: 10.1105/tpc.13.4.853 |
[253] |
Kitamura S, Shikazono N, Tanaka A. 2004. TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. The Plant Journal 37(1):104−14 doi: 10.1046/j.1365-313X.2003.01943.x |
[254] |
Baxter IR, Young JC, Armstrong G, Foster N, Bogenschutz N, et al. 2005. A plasma membrane H+-ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana. PNAS 102(7):2649−54 doi: 10.1073/pnas.0406377102 |
[255] |
Zhao J, Dixon RA. 2009. MATE transporters facilitate vacuolar uptake of epicatechin 3'-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis. The Plant Cell 21(8):2323−40 doi: 10.1105/tpc.109.067819 |
[256] |
Walker AR, Davison PA, Bolognesi-Winfield AC, James CM, Srinivasan N, et al. 1999. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. The Plant Cell 11(7):1337−49 doi: 10.1105/tpc.11.7.1337 |
[257] |
Broun P. 2005. Transcriptional control of flavonoid biosynthesis: a complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis. Current Opinion in Plant Biology 8(3):272−79 doi: 10.1016/j.pbi.2005.03.006 |
[258] |
Tian H, Wang S. 2020. TRANSPARENT TESTA GLABRA1, a Key Regulator in Plants with Multiple Roles and Multiple Function Mechanisms. International Journal of Molecular Sciences 21:4881 doi: 10.3390/ijms21144881 |
[259] |
Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M, et al. 2000. The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. The Plant Cell 12(10):1863−78 doi: 10.1105/tpc.12.10.1863 |
[260] |
Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, et al. 2004. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. The Plant Journal 39(3):366−80 doi: 10.1111/j.1365-313X.2004.02138.x |
[261] |
Johnson CS, Kolevski B, Smyth DR. 2002. TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. The Plant Cell 14(6):1359−75 doi: 10.1105/tpc.001404 |
[262] |
Xu W, Grain D, Le Gourrierec J, Harscoët E, Berger A, et al. 2013. Regulation of flavonoid biosynthesis involves an unexpected complex transcriptional regulation of TT8 expression, in Arabidopsis. New Phytologist 198(1):59−70 doi: 10.1111/nph.12142 |
[263] |
Gonzalez A, Brown M, Hatlestad G, Akhavan N, Smith T, et al. 2016. TTG2 controls the developmental regulation of seed coat tannins in Arabidopsis by regulating vacuolar transport steps in the proanthocyanidin pathway. Developmental Biology 419(1):54−63 doi: 10.1016/j.ydbio.2016.03.031 |
[264] |
Western TL, Skinner DJ, Haughn GW. 2000. Differentiation of mucilage secretory cells of the Arabidopsis seed coat. Plant Physiology 122(2):345−56 doi: 10.1104/pp.122.2.345 |
[265] |
Tsai AYL, McGee R, Dean GH, Haughn GW, Sawa S. 2021. Seed Mucilage: Biological Functions and Potential Applications in Biotechnology. Plant and Cell Physiology 62(12):1847−57 doi: 10.1093/pcp/pcab099 |
[266] |
Western TL, Burn J, Tan WL, Skinner DJ, Martin-McCaffrey L, et al. 2001. Isolation and characterization of mutants defective in seed coat mucilage secretory cell development in Arabidopsis. Plant Physiology 127(3):998−1011 doi: 10.1104/pp.010410 |
[267] |
Zhang F, Gonzalez A, Zhao M, Payne CT, Lloyd A. 2003. A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130(20):4859−69 doi: 10.1242/dev.00681 |
[268] |
Gonzalez A, Mendenhall J, Huo Y, Lloyd A. 2009. TTG1 complex MYBs, MYB5 and TT2, control outer seed coat differentiation. Developmental Biology 325(2):412−21 doi: 10.1016/j.ydbio.2008.10.005 |
[269] |
Li SF, Milliken ON, Pham H, Seyit R, Napoli R, et al. 2009. The Arabidopsis MYB5 transcription factor regulates mucilage synthesis, seed coat development, and trichome morphogenesis. The Plant Cell 21(1):72−89 doi: 10.1105/tpc.108.063503 |
[270] |
Western TL, Young DS, Dean GH, Tan WL, Samuels AL, et al. 2004. MUCILAGE-MODIFIED4 encodes a putative pectin biosynthetic enzyme developmentally regulated by APETALA2, TRANSPARENT TESTA GLABRA1, and GLABRA2 in the Arabidopsis seed coat. Plant Physiology 134(1):296−306 doi: 10.1104/pp.103.035519 |
[271] |
Xu Y, Wang Y, Du J, Pei S, Guo S, et al. 2022. A DE1 BINDING FACTOR 1-GLABRA2 module regulates rhamnogalacturonan I biosynthesis in Arabidopsis seed coat mucilage. The Plant Cell 34(4):1396−414 doi: 10.1093/plcell/koac011 |
[272] |
Penfield S, Meissner RC, Shoue DA, Carpita NC, Bevan MW. 2001. MYB61 is required for mucilage deposition and extrusion in the Arabidopsis seed coat. The Plant Cell 13(12):2777−91 doi: 10.1105/tpc.010265 |
[273] |
Stork J, Harris D, Griffiths J, Williams B, Beisson F, et al. 2010. CELLULOSE SYNTHASE9 serves a nonredundant role in secondary cell wall synthesis in Arabidopsis epidermal testa cells. Plant Physiology 153(2):580−89 doi: 10.1104/pp.110.154062 |
[274] |
Mendu V, Griffiths JS, Persson S, Stork J, Downie AB, et al. 2011. Subfunctionalization of cellulose synthases in seed coat epidermal cells mediates secondary radial wall synthesis and mucilage attachment. Plant Physiology 157(1):441−53 doi: 10.1104/pp.111.179069 |
[275] |
Ben-Tov D, Abraham Y, Stav S, Thompson K, Loraine A, et al. 2015. COBRA-LIKE2, a member of the glycosylphosphatidylinositol-anchored COBRA-LIKE family, plays a role in cellulose deposition in arabidopsis seed coat mucilage secretory cells. Plant Physiology 167(3):711−24 doi: 10.1104/pp.114.240671 |
[276] |
Du J, Ruan M, Li X, Lan Q, Zhang Q, et al. 2022. Pectin methyltransferase QUASIMODO2 functions in the formation of seed coat mucilage in Arabidopsis. Journal of Plant Physiology 274:153709 doi: 10.1016/j.jplph.2022.153709 |
[277] |
Bhargava A, Ahad A, Wang S, Mansfield SD, Haughn GW, et al. 2013. The interacting MYB75 and KNAT7 transcription factors modulate secondary cell wall deposition both in stems and seed coat in Arabidopsis. Planta 237(5):1199−211 doi: 10.1007/s00425-012-1821-9 |
[278] |
Griffiths JS, Tsai AYL, Xue H, Voiniciuc C, Šola K, et al. 2014. SALT-OVERLY SENSITIVE5 Mediates Arabidopsis Seed Coat Mucilage Adherence and Organization through Pectins. Plant Physiology 165(3):991−1004 doi: 10.1104/pp.114.239400 |
[279] |
Wang W, Xiong H, Sun K, Zhang B, Sun MX. 2021. New insights into cell-cell communications during seed development in flowering plants. Journal of Integrative Plant Biology 64(2):215−29 doi: 10.1111/jipb.13170 |