[1]

Shipman EN, Yu J, Zhou J, Albornoz K, Beckles DM. 2021. Can gene editing reduce postharvest waste and loss of fruit, vegetables, and ornamentals? Horticulture Research 8:1

doi: 10.1038/s41438-020-00428-4
[2]

Zhu J. 2016. Abiotic stress signaling and responses in plants. Cell 167:313−24

doi: 10.1016/j.cell.2016.08.029
[3]

Li X, Liang T, Liu H. 2021. How plants coordinate their development in response to light and temperature signals. The Plant Cell 34:955−66

doi: 10.1093/plcell/koab302
[4]

Ling Y, Mahfouz MM, Zhou S. 2021. Pre-mRNA alternative splicing as a modulator for heat stress response in plants. Trends in Plant Science 26:1153−70

doi: 10.1016/j.tplants.2021.07.008
[5]

Kathare PK, Huq E. 2021. Light-regulated pre-mRNA splicing in plants. Current Opinion in Plant Biology 63:102037

doi: 10.1016/j.pbi.2021.102037
[6]

Godoy Herz MA, Kubaczka MG, Brzyżek G, Servi L, Krzyszton M, et al. 2019. Light regulates plant alternative splicing through the control of transcriptional elongation. Molecular Cell 73:1066−1074.e3

doi: 10.1016/j.molcel.2018.12.005
[7]

Martín G, Márquez Y, Mantica F, Duque P, Irimia M. 2021. Alternative splicing landscapes in Arabidopsis thaliana across tissues and stress conditions highlight major functional differences with animals. Genome Biology 22:35

doi: 10.1186/s13059-020-02258-y
[8]

Jiang J, Zhang C, Wang X. 2015. A recently evolved isoform of the transcription factor BES1 promotes brassinosteroid signaling and development in Arabidopsis thaliana. The Plant Cell 27:361−74

doi: 10.1105/tpc.114.133678
[9]

Guo M, Zhang Y, Jia X, Wang X, Zhang Y, et al. 2022. Alternative splicing of REGULATOR OF LEAF INCLINATION 1 modulates phosphate starvation signaling and growth in plants. The Plant Cell 34:3319−38

doi: 10.1093/plcell/koac161
[10]

Liu T, Zhang X, Zhang H, Cheng Z, Liu J, et al. 2022. Dwarf and high Tillering1 represses rice tillering through mediating the splicing of D14 pre-mRNA. The Plant Cell 34:3301−18

doi: 10.1093/plcell/koac169
[11]

Wu Z, Liang J, Wang C, Ding L, Zhao X, et al. 2019. Alternative splicing provides a mechanism to regulate LlHSFA3 function in response to heat stress in lily. Plant Physiology 181:1651−67

doi: 10.1104/pp.19.00839
[12]

Shikata H, Hanada K, Ushijima T, Nakashima M, Suzuki Y, et al. 2014. Phytochrome controls alternative splicing to mediate light responses in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 111:18781−86

doi: 10.1073/pnas.1407147112
[13]

Li C, Zheng L, Zhang J, Lv Y, Liu J, et al. 2017. Characterization and functional analysis of four HYH splicing variants in Arabidopsis hypocotyl elongation. Gene 619:44−49

doi: 10.1016/j.gene.2017.04.001
[14]

Wang BB, Brendel V. 2004. The ASRG database: identification and survey of Arabidopsis thaliana genes involved in pre-mRNA splicing. Genome Biology 5:R102

doi: 10.1186/gb-2004-5-12-r102
[15]

Wilkinson ME, Charenton C, Nagai K. 2020. RNA splicing by the spliceosome. Annual Review of Biochemistry 89:359−88

doi: 10.1146/annurev-biochem-091719-064225
[16]

Laloum T, Martín G, Duque P. 2018. Alternative splicing control of abiotic stress responses. Trends in Plant Science 23:140−50

doi: 10.1016/j.tplants.2017.09.019
[17]

Capovilla G, Delhomme N, Collani S, Shutava I, Bezrukov I, et al. 2018. PORCUPINE regulates development in response to temperature through alternative splicing. Nature Plants 4:534−39

doi: 10.1038/s41477-018-0176-z
[18]

Nibau C, Gallemí M, Dadarou D, Doonan JH, Cavallari N. 2019. Thermo-sensitive alternative splicing of FLOWERING LOCUS M is modulated by cyclin-dependent kinase G2. Frontiers in Plant Science 10:1680

doi: 10.3389/fpls.2019.01680
[19]

Jia J, Long Y, Zhang H, Li Z, Liu Z, et al. 2020. Post-transcriptional splicing of nascent RNA contributes to widespread intron retention in plants. Nature Plants 6:780−88

doi: 10.1038/s41477-020-0688-1
[20]

Blencowe BJ. 2006. Alternative splicing: new insights from global analyses. Cell 126:37−47

doi: 10.1016/j.cell.2006.06.023
[21]

Ule J, Blencowe BJ. 2019. Alternative splicing regulatory networks: functions, mechanisms, and evolution. Molecular Cell 76:329−45

doi: 10.1016/j.molcel.2019.09.017
[22]

Wahl MC, Will CL, Lührmann R. 2009. The spliceosome: design principles of a dynamic RNP machine. Cell 136:701−18

doi: 10.1016/j.cell.2009.02.009
[23]

Cabezas-Fuster A, Micol-Ponce R, Fontcuberta-Cervera S, Ponce MR. 2022. Missplicing suppressor alleles of Arabidopsis PRE-MRNA PROCESSING FACTOR 8 increase splicing fidelity by reducing the use of novel splice sites. Nucleic Acids Research 50:5513−27

doi: 10.1093/nar/gkac338
[24]

Deng X, Lu T, Wang L, Gu L, Sun J, et al. 2016. Recruitment of the NineTeen Complex to the activated spliceosome requires AtPRMT5. Proceedings of the National Academy of Sciences of the United States of America 113:5447−52

doi: 10.1073/pnas.1522458113
[25]

Reddy ASN, Marquez Y, Kalyna M, Barta A. 2013. Complexity of the alternative splicing landscape in plants. The Plant Cell 25:3657−83

doi: 10.1105/tpc.113.117523
[26]

Marquez Y, Brown JWS, Simpson C, Barta A, Kalyna M. 2012. Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Research 22:1184−95

doi: 10.1101/gr.134106.111
[27]

James AB, Syed NH, Bordage S, Marshall J, Nimmo GA, et al. 2012. Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes. The Plant Cell 24:961−81

doi: 10.1105/tpc.111.093948
[28]

Gu Y, Zebell SG, Liang Z, Wang S, Kang BH, et al. 2016. Nuclear pore permeabilization is a convergent signaling event in effector-triggered immunity. Cell 166:1526−1538.e11

doi: 10.1016/j.cell.2016.07.042
[29]

Williamson L, Saponaro M, Boeing S, East P, Mitter R, et al. 2017. UV irradiation induces a non-coding RNA that functionally opposes the protein encoded by the same gene. Cell 168:843−855.e13

doi: 10.1016/j.cell.2017.01.019
[30]

Huang J, Lu X, Wu H, Xie Y, Peng Q, et al. 2020. Phytophthora effectors modulate genome-wide alternative splicing of host mRNAs to reprogram plant immunity. Molecular Plant 13:1470−84

doi: 10.1016/j.molp.2020.07.007
[31]

Dever TE, Ivanov IP, Sachs MS. 2020. Conserved upstream open reading frame nascent peptides that control translation. Annual Review of Genetics 54:237−64

doi: 10.1146/annurev-genet-112618-043822
[32]

Dong J, Chen H, Deng X, Irish VF, Wei N. 2020. Phytochrome B induces intron retention and translational inhibition of PHYTOCHROME-INTERACTING FACTOR3. Plant Physiology 182:159−66

doi: 10.1104/pp.19.00835
[33]

Penfield S, Josse EM, Halliday KJ. 2010. A role for an alternative splice variant of PIF6 in the control of Arabidopsis primary seed dormancy. Plant Molecular Biology 73:89−95

doi: 10.1007/s11103-009-9571-1
[34]

Tognacca RS, Servi L, Hernando CE, Saura-Sanchez M, Yanovsky MJ, et al. 2019. Alternative splicing regulation during light-induced germination of Arabidopsis thaliana seeds. Frontiers in Plant Science 10:1076

doi: 10.3389/fpls.2019.01076
[35]

Xin R, Zhu L, Salomé PA, Mancini E, Marshall CM, et al. 2017. SPF45-related splicing factor for phytochrome signaling promotes photomorphogenesis by regulating pre-mRNA splicing in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 114:E7018−E7027

doi: 10.1073/pnas.1706379114
[36]

Charng YY, Liu HC, Liu NY, Chi WT, Wang CN et al. 2007. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiology 143:251−62

doi: 10.1104/pp.106.091322
[37]

Liu J, Sun N, Liu M, Liu J, Du B, et al. 2013. An autoregulatory loop controlling Arabidopsis HsfA2 expression: role of heat shock-induced alternative splicing. Plant Physiology 162:512−21

doi: 10.1104/pp.112.205864
[38]

Moreno AA, Mukhtar MS, Blanco F, Boatwright JL, Moreno I, et al. 2012. IRE1/bZIP60-mediated unfolded protein response plays distinct roles in plant immunity and abiotic stress responses. PLoS ONE 7:e31944

doi: 10.1371/journal.pone.0031944
[39]

Deng Y, Humbert S, Liu J, Srivastava R, Rothstein SJ, et al. 2011. Heat induces the splicing by IRE1 of a mRNA encoding a transcription factor involved in the unfolded protein response in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 108:7247−52

doi: 10.1073/pnas.1102117108
[40]

Li Z, Tang J, Srivastava R, Bassham DC, Howell SH. 2020. The transcription factor bZIP60 links the unfolded protein response to the heat stress response in maize. The Plant Cell 32:3559−75

doi: 10.1105/tpc.20.00260
[41]

Deng Y, Srivastava R, Howell SH. 2013. Protein kinase and ribonuclease domains of IRE1 confer stress tolerance, vegetative growth, and reproductive development in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 110:19633−38

doi: 10.1073/pnas.1314749110
[42]

Deng Y, Srivastava R, Quilichini TD, Dong H, Bao Y, et al. 2016. IRE1, a component of the unfolded protein response signaling pathway, protects pollen development in Arabidopsis from heat stress. The Plant Journal 88:193−204

doi: 10.1111/tpj.13239
[43]

Iwata Y, Fedoroff NV, Koizumi N. 2008. Arabidopsis bZIP60 is a proteolysis-activated transcription factor involved in the endoplasmic reticulum stress response. The Plant Cell 20:3107−21

doi: 10.1105/tpc.108.061002
[44]

Posé D, Verhage L, Ott F, Yant L, Mathieu J, et al. 2013. Temperature-dependent regulation of flowering by antagonistic FLM variants. Nature 503:414−17

doi: 10.1038/nature12633
[45]

Zhu J, Lou Y, Shi Q, Zhang S, Zhou W, et al. 2020. Slowing development restores the fertility of thermo-sensitive male-sterile plant lines. Nature Plants 6:360−67

doi: 10.1038/s41477-020-0622-6
[46]

Huang X, Niu J, Sun M, Zhu J, Gao J, et al. 2013. CYCLIN-DEPENDENT KINASE G1 is associated with the spliceosome to regulate CALLOSE SYNTHASE5 splicing and pollen wall formation in Arabidopsis. The Plant Cell 25:637−48

doi: 10.1105/tpc.112.107896
[47]

Riegler S, Servi L, Scarpin MR, Godoy Herz MA, Kubaczka MG, et al. 2021. Light regulates alternative splicing outcomes via the TOR kinase pathway. Cell Reports 36:109676

doi: 10.1016/j.celrep.2021.109676
[48]

Jung JH, Domijan M, Klose C, Biswas S, Ezer D, et al. 2016. Phytochromes function as thermosensors in Arabidopsis. Science 354:886−89

doi: 10.1126/science.aaf6005
[49]

Jiang B, Shi Y, Peng Y, Jia Y, Yan Y, et al. 2020. Cold-induced CBF-PIF3 interaction enhances freezing tolerance by stabilizing the phyB thermosensor in Arabidopsis. Molecular Plant 13:894−906

doi: 10.1016/j.molp.2020.04.006
[50]

Xin R, Kathare PK, Huq E. 2019. Coordinated regulation of pre-mRNA splicing by the SFPS-RRC1 complex to promote photomorphogenesis. The Plant Cell 31:2052−69

doi: 10.1105/tpc.18.00786
[51]

Shikata H, Shibata M, Ushijima T, Nakashima M, Kong SG, et al. 2012. The RS domain of Arabidopsis splicing factor RRC1 is required for phytochrome B signal transduction. The Plant Journal 70:727−38

doi: 10.1111/j.1365-313X.2012.04937.x
[52]

Hartmann L, Drewe-Boß P, Wießner T, Wagner G, Geue S, et al. 2016. Alternative splicing substantially diversifies the transcriptome during early photomorphogenesis and correlates with the energy availability in Arabidopsis. The Plant Cell 28:2715−34

doi: 10.1105/tpc.16.00508
[53]

Schwenk P, Sheerin DJ, Ponnu J, Staudt AM, Lesch KL, et al. 2021. Uncovering a novel function of the CCR4-NOT complex in phytochrome A-mediated light signalling in plants. eLife 10:e63697

doi: 10.7554/eLife.63697
[54]

Li Y, Du Y, Huai J, Jing Y, Lin R. 2022. The RNA helicase UAP56 and the E3 ubiquitin ligase COP1 coordinately regulate alternative splicing to repress photomorphogenesis in Arabidopsis. The Plant Cell 34:4191−212

doi: 10.1093/plcell/koac235
[55]

Vogel JL, Parsell DA, Lindquist S. 1995. Heat-shock proteins Hsp104 and Hsp70 reactivate mRNA splicing after heat inactivation. Current Biology 5:306−17

doi: 10.1016/S0960-9822(95)00061-3
[56]

Song P, Jia Q, Xiao X, Tang Y, Liu C, et al. 2021. HSP70-3 interacts with phospholipase Dδ and participates in heat stress defense. Plant Physiology 185:1148−65

doi: 10.1093/plphys/kiaa083
[57]

Wang TY, Wu JR, Duong NKT, Lu CA, Yeh CH, et al. 2021. HSP70-4 and farnesylated AtJ3 constitute a specific HSP70/HSP40-based chaperone machinery essential for prolonged heat stress tolerance in Arabidopsis. Journal of Plant Physiology 261:153430

doi: 10.1016/j.jplph.2021.153430
[58]

Tiwari LD, Khungar L, Grover A. 2020. AtHsc70-1 negatively regulates the basal heat tolerance in Arabidopsis thaliana through affecting the activity of HsfAs and Hsp101. The Plant Journal 103:2069−83

doi: 10.1111/tpj.14883
[59]

Guan Q, Wu J, Zhang Y, Jiang C, Liu R, et al. 2013. A DEAD box RNA helicase is critical for pre-mRNA splicing, cold-responsive gene regulation, and cold tolerance in Arabidopsis. The Plant Cell 25:342−56

doi: 10.1105/tpc.112.108340
[60]

Guan Q, Wen C, Zeng H, Zhu J. 2013. A KH domain-containing putative RNA-binding protein is critical for heat stress-responsive gene regulation and thermotolerance in Arabidopsis. Molecular Plant 6:386−95

doi: 10.1093/mp/sss119
[61]

Schlaen RG, Mancini E, Sanchez SE, Perez-Santángelo S, Rugnone ML, et al. 2015. The spliceosome assembly factor GEMIN2 attenuates the effects of temperature on alternative splicing and circadian rhythms. Proceedings of the National Academy of Sciences of the United States of America 112:9382−87

doi: 10.1073/pnas.1504541112
[62]

Kim JS, Jung HJ, Lee HJ, Kim KA, Goh CH, et al. 2008. Glycine-rich RNA-binding protein7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. The Plant Journal 55:455−466

doi: 10.1111/j.1365-313X.2008.03518.x
[63]

de Francisco Amorim M, Willing EM, Szabo EX, Francisco-Mangilet AG, Droste-Borel I, et al. 2018. The U1 snRNP subunit LUC7 modulates plant development and stress responses via regulation of alternative splicing. The Plant Cell 30:2838−54

doi: 10.1105/tpc.18.00244
[64]

Calixto CPG, Guo W, James AB, Tzioutziou NA, Entizne JC, et al. 2018. Rapid and dynamic alternative splicing impacts the Arabidopsis cold response transcriptome. The Plant Cell 30:1424−44

doi: 10.1105/tpc.18.00177
[65]

Lu CA, Huang CK, Huang WS, Huang TS, Liu HY, et al. 2020. DEAD-box RNA helicase 42 plays a critical role in pre-mRNA splicing under cold stress. Plant Physiology 182:255−71

doi: 10.1104/pp.19.00832
[66]

Kim GD, Yoo SD, Cho YH. 2018. STABILIZED1 as a heat stress-specific splicing factor in Arabidopsis thaliana. Plant Signaling & Behavior 13:e1432955

doi: 10.1080/15592324.2018.1432955
[67]

Lee BH, Kapoor A, Zhu J, Zhu JK. 2006. STABILIZED1, a stress-upregulated nuclear protein, is required for pre-mRNA splicing, mRNA turnover, and stress tolerance in Arabidopsis. The Plant Cell 18:1736−49

doi: 10.1105/tpc.106.042184
[68]

Nibau C, Dadarou D, Kargios N, Mallioura A, Fernandez-Fuentes N, et al. 2020. A functional kinase is necessary for cyclin-dependent kinase G1 (CDKG1) to maintain fertility at high ambient temperature in Arabidopsis. Frontiers in Plant Science 11:586870

doi: 10.3389/fpls.2020.586870
[69]

Zheng T, Nibau C, Phillips DW, Jenkins G, Armstrong SJ, et al. 2014. CDKG1 protein kinase is essential for synapsis and male meiosis at high ambient temperature in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 111:2182−87

doi: 10.1073/pnas.1318460111
[70]

Cavallari N, Nibau C, Fuchs A, Dadarou D, Barta A, et al. 2018. The cyclin-dependent kinase G group defines a thermo-sensitive alternative splicing circuit modulating the expression of Arabidopsis ATU2AF65A. The Plant Journal 94:1010−22

doi: 10.1111/tpj.13914
[71]

Lee KC, Chung KS, Lee HT, Park JH, Lee JH, et al. 2020. Role of Arabidopsis splicing factor SF1 in temperature-responsive alternative splicing of FLM pre-mRNA. Frontiers in Plant Science 11:596354

doi: 10.3389/fpls.2020.596354
[72]

Zhao N, Su X, Liu Z, Zhou J, Su Y, et al. 2022. The RNA recognition motif-containing protein UBA2c prevents early flowering by promoting transcription of the flowering repressor FLM in Arabidopsis. New Phytologist 233:751−65

doi: 10.1111/nph.17836
[73]

Chang P, Hsieh HY, Tu SL. 2022. The U1 snRNP component RBP45d regulates temperature-responsive flowering in Arabidopsis. The Plant cell 34:834−51

doi: 10.1093/plcell/koab273
[74]

Zhao Z, Dent C, Liang H, Lv J, Shang G, et al. 2022. CRY2 interacts with CIS1 to regulate thermosensory flowering via FLM alternative splicing. Nature Communications 13:7045

doi: 10.1038/s41467-022-34886-2
[75]

Du L, Song J, Forney C, Palmer LC, Fillmore S, et al. 2016. Proteome changes in banana fruit peel tissue in response to ethylene and high-temperature treatments. Horticulture Research 3:16012

doi: 10.1038/hortres.2016.12
[76]

Dai H, Zhu Z, Wang Z, Zhang Z, Kong W, et al. 2022. Galactinol synthase 1 improves cucumber performance under cold stress by enhancing assimilate translocation. Horticulture Research 9:uhab063

doi: 10.1093/hr/uhab063
[77]

Li T, Yamane H, Tao R. 2021. Preharvest long-term exposure to UV-B radiation promotes fruit ripening and modifies stage-specific anthocyanin metabolism in highbush blueberry. Horticulture Research 8:67

doi: 10.1038/s41438-021-00503-4
[78]

Alabd A, Ahmad M, Zhang X, Gao Y, Peng L, et al. 2022. Light-responsive transcription factor PpWRKY44 induces anthocyanin accumulation by regulating PpMYB10 expression in pear. Horticulture Research 9:uhac199

doi: 10.1093/hr/uhac199
[79]

Liu Z, Qin J, Tian X, Xu S, Wang Y, et al. 2018. Global profiling of alternative splicing landscape responsive to drought, heat and their combination in wheat (Triticum aestivum L.). Plant Biotechnology Journal 16:714−26

doi: 10.1111/pbi.12822
[80]

Liu B, Zhao S, Li P, Yin Y, Niu Q, et al. 2021. Plant buffering against the high-light stress-induced accumulation of CsGA2ox8 transcripts via alternative splicing to finely tune gibberellin levels and maintain hypocotyl elongation. Horticulture Research 8:2

doi: 10.1038/s41438-020-00430-w
[81]

Hu Y, Mesihovic A, Jiménez-Gómez JM, Röth S, Gebhardt P, et al. 2020. Natural variation in HsfA2 pre-mRNA splicing is associated with changes in thermotolerance during tomato domestication. New Phytologist 225:1297−310

doi: 10.1111/nph.16221
[82]

Schornack S, Ballvora A, Gürlebeck D, Peart J, Ganal M, et al. 2004. The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3. The Plant Journal 37:46−60

doi: 10.1046/j.1365-313X.2003.01937.x
[83]

Piffanelli P, Zhou F, Casais C, Orme J, Jarosch B, et al. 2002. The barley MLO modulator of defense and cell death is responsive to biotic and abiotic stress stimuli. Plant Physiology 129:1076−85

doi: 10.1104/pp.010954
[84]

Xu Y, Lei Y, Li R, Zhang L, Zhao Z, et al. 2017. XAP5 CIRCADIAN TIMEKEEPER positively regulates RESISTANCE TO POWDERY MILDEW8.1-mediated immunity in Arabidopsis. Frontiers in Plant Science 8:2044

doi: 10.3389/fpls.2017.02044
[85]

Chehab EW, Kim S, Savchenko T, Kliebenstein D, Dehesh K, et al. 2011. Intronic T-DNA insertion renders Arabidopsis opr3 a conditional jasmonic acid-producing mutant. Plant Physiology 156:770−78

doi: 10.1104/pp.111.174169
[86]

Zhang C, Huang L, Zhang H, Hao Q, Lyu B, et al. 2019. An ancestral NB-LRR with duplicated 3′UTRs confers stripe rust resistance in wheat and barley. Nature Communications 10:4023

doi: 10.1038/s41467-019-11872-9
[87]

Wang L, Wang L, Yang T, Wang B, Lin Q, Zhu S, et al. 2020. RALF1-FERONIA complex affects splicing dynamics to modulate stress responses and growth in plants. Science Advances 6:eaaz1622

doi: 10.1126/sciadv.aaz1622
[88]

Lin J, Shi J, Zhang Z, Zhong B, Zhu Z. 2022. Plant AFC2 kinase desensitizes thermomorphogenesis through modulation of alternative splicing. iScience 25:104051

doi: 10.1016/j.isci.2022.104051
[89]

Dressano K, Weckwerth PR, Poretsky E, Takahashi Y, Villarreal C, et al. 2020. Dynamic regulation of Pep-induced immunity through post-translational control of defence transcript splicing. Nature Plants 6:1008−19

doi: 10.1038/s41477-020-0724-1
[90]

Gao C. 2021. Genome engineering for crop improvement and future agriculture. Cell 184:1621−35

doi: 10.1016/j.cell.2021.01.005
[91]

Yang T, Ali M, Lin L, Li P, He H, et al. 2023. Recoloring tomato fruit by CRISPR/Cas9-mediated multiplex gene editing. Horticulture Research 10:uhac214

doi: 10.1093/hr/uhac214
[92]

Quint M, Delker C, Franklin KA, Wigge PA, Halliday KJ, et al. 2016. Molecular and genetic control of plant thermomorphogenesis. Nature Plants 2:15190

doi: 10.1038/nplants.2015.190
[93]

Yu X, Liu H, Klejnot J, Lin C. 2010. The cryptochrome blue light receptors. The Arabidopsis Book 8:e0135

doi: 10.1199/tab.0135