[1] |
Zheng H, Fu X, Shao J, Tang Y, Yu M, et al. 2023. Transcriptional regulatory network of high-value active ingredients in medicinal plants. Trends in Plant Science 28:429−46 doi: 10.1016/j.tplants.2022.12.007 |
[2] |
Tessarz P, Kouzarides T. 2014. Histone core modifications regulating nucleosome structure and dynamics. Nature Reviews Molecular Cell Biology 15:703−8 doi: 10.1038/nrm3890 |
[3] |
Chen X, Bhadauria V, Ma B. 2018. ChIP-Seq: A Powerful Tool for Studying Protein-DNA Interactions in Plants. Current Issues in Molecular Biology 27:171−80 doi: 10.21775/cimb.027.171 |
[4] |
Schmidl C, Rendeiro AF, Sheffield NC, Bock C. 2015. ChIPmentation: fast, robust, low-input ChIP-seq for histones and transcription factors. Nature Methods 12:963−65 doi: 10.1038/nmeth.3542 |
[5] |
Huang M, Zhang L, Zhou L, Wang M, Yung WS, et al. 2021. An expedient survey and characterization of the soybean JAGGED 1 (GmJAG1) transcription factor binding preference in the soybean genome by modified ChIPmentation on soybean protoplasts. Genomics 113:344−55 doi: 10.1016/j.ygeno.2020.12.026 |
[6] |
Sun W, Leng L, Yin Q, Xu M, Huang M, et al. 2019. The genome of the medicinal plant Andrographis paniculata provides insight into the biosynthesis of the bioactive diterpenoid neoandrographolide. The Plant Journal 97:841−57 doi: 10.1111/tpj.14162 |
[7] |
Zhang L, Zhong K, Dai Y, Zhou H. 2009. Genome-wide analysis of histone H3 lysine 27 trimethylation by ChIP-chip in gastric cancer patients. Journal of Gastroenterology 44:305−12 doi: 10.1007/s00535-009-0027-9 |
[8] |
Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, et al. 2008. Model-based analysis of ChIP-Seq (MACS). Genome Biology 9:R137 doi: 10.1186/gb-2008-9-9-r137 |