[1]

Dure L III, Greenway SC, Galau GA. 1981. Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20:4162−68

doi: 10.1021/bi00517a033
[2]

Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, et al. 2016. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Research 44:D279−D285

doi: 10.1093/nar/gkv1344
[3]

Shao H, Liang Z, Shao M. 2005. LEA proteins in higher plants: structure, function, gene expression and regulation. Colloids and Surfaces B: Biointerfaces 45:131−35

doi: 10.1016/j.colsurfb.2005.07.017
[4]

Hundertmark M, Hincha DK. 2008. LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9:118

doi: 10.1186/1471-2164-9-118
[5]

Liang Y, Xiong Z, Zheng J, Xu D, Zhu Z, et al. 2016. Genome-wide identification, structural analysis and new insights into late embryogenesis abundant (LEA) gene family formation pattern in Brassica napus. Scientific Reports 6:24265

doi: 10.1038/srep24265
[6]

Wang X, Zhu H, Jin G, Liu H, Wu W, et al. 2007. Genome-scale identification and analysis of LEA genes in rice (Oryza sativa L.). Plant Science 172:414−20

doi: 10.1016/j.plantsci.2006.10.004
[7]

Li X, Cao J. 2016. Late embryogenesis abundant (LEA) gene family in maize: identification, evolution, and expression profiles. Plant Molecular Biology Reporter 34:15−28

doi: 10.1007/s11105-015-0901-y
[8]

Chen Y, Li C, Zhang B, Yi J, Yang Y, et al. 2019. The role of the late embryogenesis-abundant (LEA) protein family in development and the abiotic stress response: a comprehensive expression analysis of potato (Solanum tuberosum). Genes 10:148

doi: 10.3390/genes10020148
[9]

Celik Altunoglu Y, Baloglu P, Yer EN, Pekol S, Baloglu MC, et al. 2016. Identification and expression analysis of LEA gene family members in cucumber genome. Plant Growth Regulation 80:225−41

doi: 10.1007/s10725-016-0160-4
[10]

Cao J, Li X. 2015. Identification and phylogenetic analysis of late embryogenesis abundant proteins family in tomato (Solanum lycopersicum). Planta 241:757−72

doi: 10.1007/s00425-014-2215-y
[11]

Wu C, Hu W, Yan Y, Tie W, Ding Z, et al. 2018. The late embryogenesis abundant protein family in cassava (Manihot esculenta crantz):genome-wide characterization and expression during abiotic stress. Molecules 23:1196

doi: 10.3390/molecules23051196
[12]

Lan T, Gao J, Zeng Q. 2013. Genome-wide analysis of the LEA (late embryogenesis abundant) protein gene family in Populus trichocarpa. Tree Genetics & Genomes 9:253−64

doi: 10.1007/s11295-012-0551-2
[13]

Du D, Zhang Q, Cheng T, Pan H, Yang W, et al. 2013. Genome-wide identification and analysis of late embryogenesis abundant (LEA) genes in Prunus mume. Molecular biology reports 40:1937−46

doi: 10.1007/s11033-012-2250-3
[14]

Gao J, Lan T. 2016. Functional characterization of the late embryogenesis abundant (LEA) protein gene family from Pinus tabuliformis (Pinaceae) in Escherichia coli. Scientific Reports 6:19467

doi: 10.1038/srep19467
[15]

Lin R, Zou T, Mei Q, Wang Z, Zhang M, et al. 2021. Genome-wide analysis of the late embryogenesis abundant (LEA) and abscisic acid-, stress-, and ripening-induced (ASR) gene superfamily from Canavalia rosea and their roles in salinity/alkaline and drought tolerance. International Journal of Molecular Sciences 22:4554

doi: 10.3390/ijms22094554
[16]

Li Z, Chi H, Liu C, Zhang T, Han L, et al. 2021. Genome-wide identification and functional characterization of LEA genes during seed development process in linseed flax (Linum usitatissimum L.). BMC Plant Biology 21:193

doi: 10.1186/s12870-021-02972-0
[17]

Huang R, Xiao D, Wang X, Zhan J, Wang A, et al. 2022. Genome-wide identification, evolutionary and expression analyses of LEA gene family in peanut (Arachis hypogaea L.). BMC Plant Biology 22:155

doi: 10.1186/s12870-022-03462-7
[18]

Wang G, Xu X, Gao Z, Liu T, Li Y, et al. 2022. Genome-wide identification of LEA gene family and cold response mechanism of BcLEA4-7 and BcLEA4-18 in non-heading Chinese cabbage [Brassica campestris (syn. Brassica rapa) ssp. chinensis]. Plant Science 321:111291

doi: 10.1016/j.plantsci.2022.111291
[19]

Huang Z, Zhong X, He J, Jin S, Guo H, Yu X, et al. 2016. Genome-wide identification, characterization, and stress-responsive expression profiling of genes encoding LEA (late embryogenesis abundant) proteins in moso bamboo (Phyllostachys edulis). PLoS ONE 11:e0165953

doi: 10.1371/journal.pone.0165953
[20]

Celik Altunoglu Y, Baloglu MC, Baloglu P, Yer EN, Kara S. 2017. Genome-wide identification and comparative expression analysis of LEA genes in watermelon and melon genomes. Physiology and Molecular Biology of Plants 23:5−21

doi: 10.1007/s12298-016-0405-8
[21]

Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA. 2000. Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. Journal of Biological Chemistry 275:5668−74

doi: 10.1074/jbc.275.8.5668
[22]

Gal TZ, Glazer I, Koltai H. 2004. An LEA group 3 family member is involved in survival of C. elegans during exposure to stress. FEBS Letters 577:21−26

doi: 10.1016/j.febslet.2004.09.049
[23]

Battaglia M, Covarrubias AA. 2013. Late Embryogenesis Abundant (LEA) proteins in legumes. Frontiers in Plant Science 4:190

doi: 10.3389/fpls.2013.00190
[24]

Olvera-Carrillo Y, Luis Reyes J, Covarrubias AA. 2011. Late embryogenesis abundant proteins: versatile players in the plant adaptation to water limiting environments. Plant Signaling & Behavior 6:586−89

doi: 10.4161/psb.6.4.15042
[25]

Muvunyi BP, Yan Q, Wu F, Min X, Yan Z, et al. 2018. Mining late embryogenesis abundant (LEA) family genes in Cleistogenes songorica, a xerophyte perennial desert plant. International Journal of Molecular Sciences 19:3430

doi: 10.3390/ijms19113430
[26]

Chandra Babu R, Zhang JX, Blum A, David Ho TH, Wu R, et al. 2004. HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Science 166:855−62

doi: 10.1016/j.plantsci.2003.11.023
[27]

Tolleter D, Hincha DK, Macherel D. 2010. A mitochondrial late embryogenesis abundant protein stabilizes model membranes in the dry state. Biochimica et Biophysica Acta 1798:1926−33

doi: 10.1016/j.bbamem.2010.06.029
[28]

Hara M, Fujinaga M, Kuboi T. 2005. Metal binding by citrus dehydrin with histidine-rich domains. Journal of Experimental Botany 56:2695−703

doi: 10.1093/jxb/eri262
[29]

Hara M, Terashima S, Fukaya T, Kuboi T. 2003. Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217:290−98

doi: 10.1007/s00425-003-0986-7
[30]

Krüger C, Berkowitz O, Stephan UW, Hell R. 2002. A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L. Journal of Biological Chemistry 277:25062−69

doi: 10.1074/jbc.M201896200
[31]

Hsing YC, Tsou CH, Hsu TF, Chen ZY, Hsieh KL, et al. 1998. Tissue- and stage-specific expression of a soybean (Glycine max L.) seed-maturation, biotinylated protein. Plant Molecular Biology 38:481−90

doi: 10.1023/A:1006079926339
[32]

Wang S, Huang Y, Li Z, Huang H, Lin E. 2022. Research progress in plant somatic embryogenesis and its molecular regulation mechanism. Journal of Zhejiang A& F University 39:223−32

doi: 10.11833/j.issn.2095-0756.20210141
[33]

Zhang TZ, Wang JX, Nie XR, Yan XM, Mao Q, et al. 2022. Research Progress on Somatic Embryogenesis and Its Molecular Regulatory Mechanism in Plant. Molecular Plant Breeding. 1–10.

[34]

Guan Y, Li S, Fan X, Su Z. 2016. Application of somatic embryogenesis in woody plants. Frontiers in Plant Science 7:938

doi: 10.3389/fpls.2016.00938
[35]

Mancarz GFF, Laba LC, da Silva ECP, Prado MRM, de Souza LM, et al. 2019. Liquidambar styraciflua L.: a new potential source for therapeutic uses. Journal of Pharmaceutical and Biomedical Analysis 174:422−31

doi: 10.1016/j.jpba.2019.06.003
[36]

Qi S, Zhao R, Yan J, Fan Y, Huang C, et al. 2021. Global transcriptome and coexpression network analyses reveal new insights into somatic embryogenesis in hybrid sweetgum (Liquidambar styraciflua × Liquidambar formosana). Frontiers in Plant Science 12:751866

doi: 10.3389/fpls.2021.751866
[37]

Merkle SA, Neu KA, Battle PJ, Bailey RL. 1998. Somatic embryogenesis and plantlet regeneration from immature and mature tissues of sweetgum (Liquidambar styraciflua). Plant Science 132:169−78

doi: 10.1016/S0168-9452(98)00007-7
[38]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular plant 13:1194−202

doi: 10.1016/j.molp.2020.06.009
[39]

Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, et al. 2015. CDD: NCBI’s conserved domain database. Nucleic Acids Research 43:D222−D226

doi: 10.1093/nar/gku1221
[40]

Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, et al. 2003. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research 31:3784−88

doi: 10.1093/nar/gkg563
[41]

Horton P, Park KJ, Obayashi T, Fujita N, Harada H, et al. 2007. WoLF PSORT: protein localization predictor. Nucleic Acids Research 35:W585−W587

doi: 10.1093/nar/gkm259
[42]

Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, et al. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30:325−27

doi: 10.1093/nar/30.1.325
[43]

Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33:1870−74

doi: 10.1093/molbev/msw054
[44]

Bailey TL, Boden M, Buske FA, Frith M, Grant CE, et al. 2009. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research 37:W202−W208

doi: 10.1093/nar/gkp335
[45]

Zheng L, Ma J, Song C, An N, Zhang D, et al. 2017. Genome-wide identification and expression profiling analysis of brassinolide signal transduction genes regulating apple tree architecture. Acta Physiologiae Plantarum, 39:177

doi: 10.1007/s11738-017-2479-5
[46]

Liu H, Xing M, Yang W, Mu X, Wang X, et al. 2019. Genome-wide identification of and functional insights into the late embryogenesis abundant (LEA) gene family in bread wheat (Triticum aestivum). Scientific Reports 9:13375

doi: 10.1038/s41598-019-49759-w
[47]

Liu H, Xing M, Yang W, Mu X, Wang X, et al. 2020. Author Correction: Genome-wide identification of and functional insights into the late embryogenesis abundant (LEA) gene family in bread wheat (Triticum aestivum). Scientific Reports 10:13405

doi: 10.1038/s41598-020-70133-8
[48]

Zeng X, Ling H, Yang J, Li Y, Guo S. 2018. LEA proteins from Gastrodia elata enhance tolerance to low temperature stress in Escherichia coli. Gene 646:136−42

doi: 10.1016/j.gene.2018.01.002
[49]

Wang W, Gao T, Chen J, Yang J, Huang H, et al. 2019. The late embryogenesis abundant gene family in tea plant (Camellia sinensis): genome-wide characterization and expression analysis in response to cold and dehydration stress. Plant Physiology and Biochemistry 135:277−86

doi: 10.1016/j.plaphy.2018.12.009
[50]

Qian Y, Chen C, Jiang L, Zhang J, Ren Q. 2019. Genome-wide identification, classification and expression analysis of the JmjC domain-containing histone demethylase gene family in maize. BMC Genomics 20:256

doi: 10.1186/s12864-019-5633-1
[51]

Tunnacliffe A, Wise MJ. 2007. The continuing conundrum of the LEA proteins. Naturwissenschaften 94:791−812

doi: 10.1007/s00114-007-0254-y
[52]

Hincha DK, Thalhammer A. 2012. LEA proteins: IDPs with versatile functions in cellular dehydration tolerance. Biochemical Society Transactions 40:1000−3

doi: 10.1042/BST20120109
[53]

Rodriguez-Salazar J, Moreno S, Espín G. 2017. LEA proteins are involved in cyst desiccation resistance and other abiotic stresses in Azotobacter vinelandii. Cell Stress and Chaperones 22:397−408

doi: 10.1007/s12192-017-0781-1
[54]

Roberts JK, DeSimone NA, Lingle WL, Dure L III. 1993. Cellular concentrations and uniformity of cell-type accumulation of two Lea proteins in cotton embryos. The Plant Cell 5:769−80

doi: 10.2307/3869614
[55]

Stasolla C, Bozhkov PV, Chu TM, van Zyl L, Egertsdotter U, et al. 2004. Variation in transcript abundance during somatic embryogenesis in gymnosperms. Tree Physiology 24:1073−85

doi: 10.1093/treephys/24.10.1073
[56]

Pedrosa AM, de Paula Santos Martins C, Gonçalves LP, Costa MGC. 2015. Late embryogenesis abundant (LEA) constitutes a large and diverse family of proteins involved in development and abiotic stress responses in sweet orange (Citrus sinensis L. osb.). PLoS ONE 10:e0145785

doi: 10.1371/journal.pone.0145785
[57]

Kaur G, Asthir B. 2017. Molecular responses to drought stress in plants. Biologia Plantarum 61:201−9

doi: 10.1007/s10535-016-0700-9
[58]

Ban Q, Liu G, Wang Y. 2011. A DREB gene from Limonium bicolor mediates molecular and physiological responses to copper stress in transgenic tobacco. Journal of Plant Physiology 168:449−58

doi: 10.1016/j.jplph.2010.08.013
[59]

Liu H, Yang Y, Liu D, Wang X, Zhang L. 2020. Transcription factor TabHLH49 positively regulates dehydrin WZY2 gene expression and enhances drought stress tolerance in wheat. BMC Plant Biology 20:259

doi: 10.1186/s12870-020-02474-5
[60]

Su M, Huang G, Zhang Q, Wang X, Li C, et al. 2016. The LEA protein, ABR, is regulated by ABI5 and involved in dark-induced leaf senescence in Arabidopsis thaliana. Plant Science 247:93−103

doi: 10.1016/j.plantsci.2016.03.009