[1]

Zou X. 2010. A pharmacophylogenetic study of Atractylodes plants. PhD. Dissertation. Beijing University of Chinese Medicine, Beijing.

[2]

Cai H, Xu Z, Luo S, Zhang W, Cao G, et al. 2012. Study on chemical fingerprinting of crude and processed Atractylodes macrocephala from different locations in Zhejiang province by reversed-phase high-performance liquid chromatography coupled with hierarchical cluster analysis. Pharmacognosy Magazine 8:300−7

doi: 10.4103/0973-1296.103659
[3]

Zhu B, Zhang Q, Hua J, Cheng W, Qin L. 2018. The traditional uses, phytochemistry, and pharmacology of Atractylodes macrocephala Koidz. : A review. Journal of Ethnopharmacology 226:143−67

doi: 10.1016/j.jep.2018.08.023
[4]

Kohjyouma M, Nakajima S, Namera A, Shimizu R, Mizukami H, et al. 1997. Random amplified polymorphic DNA analysis and variation of essential oil components of Atractylodes plants. Biological and Pharmaceutical Bulletin 20:502−6

doi: 10.1248/bpb.20.502
[5]

Wu ZY, Raven PH, Hong DY. 2011. Flora of China. Beijing: Science Press and St. Louis: Missouri Botanical Garden Press. www.iplant.cn/foc/Guidelines

[6]

Ma Y, Gao XQ, Song YP. 2000. Technology of harvest, process, and preparation of Atractylodes macrocephala Koidz. Lishizhen Medicine and Materia Medica Research 11:307

doi: 10.3969/j.issn.1008-0805.2000.04.014
[7]

Editorial Committee of Chinese Pharmacopoeia. 2020. Pharmacopoeia of the People's Republic of China. pp 107. Beijing: China Medical Science and Technology Press

[8]

Yang Y, Wei N, Wu Y, Yang S, Xie J, et al. 2021. Research progress on extraction separation, chemical constitution and pharmacological activities of polysaccharide extracted from Atractylodes macrocephala. Chinese Traditional and Herbal Drugs 50:578−84

[9]

Houpan S. 2014. Studies on the effects of Atractylodes macrocephala Koidz. on polyamine-mediated calcium channels signaling pathway during intestinal epithelial cell migration. PhD. Dissertation. Guangzhou University of Chinese Medicine, Guangzhou

[10]

Deng M, Chen H, Long J, Song J, Xie L, et al. 2021. Atractylenolides (I, II, and III): a review of their pharmacology and pharmacokinetics. Archives of Pharmacal Research 44:633−54

doi: 10.1007/s12272-021-01342-6
[11]

Bailly C. 2021. Atractylenolides, essential components of Atractylodes-based traditional herbal medicines: Antioxidant, anti-inflammatory and anticancer properties. European Journal of Pharmacology 891:173735

doi: 10.1016/j.ejphar.2020.173735
[12]

Zheng L, Shao ZD, Wang ZC, Fu CX. 2012. Isolation and characterization of polymorphic microsatellite markers from the Chinese medicinal herb Atractylodes macrocephala (Asteraceae). International Journal of Molecular Sciences 13:16046−52

doi: 10.3390/ijms131216046
[13]

Peng W, Han T, Xin WB, Zhang XG, Zhang QY, et al. 2011. Comparative research of chemical constituents and bioactivities between petroleum ether extracts of the aerial part and the rhizome of Atractylodes macrocephala. Medicinal Chemistry Research 20:146−51

doi: 10.1007/s00044-010-9311-8
[14]

Peng H, Wang D. 2004. Formation and changes of atractylodes root medicine. Chinese Journal of Traditional Chinese Medicine 12:1133-113−15-17

[15]

Yang S, Gong H, Zhao Y, Chen B, Fu C. 2013. Effects of origin and provenance on the quality of Atractylodes Rhizoma. Journal of Chinese Medicinal Materials 36(6):890−92

[16]

Zhu X, Song R, Wu Z, Zhou J, Cao L, et al. 2015. Standard cultivation of atractylodes in Pingjiang County, Hunan Province. Chinese Journal of Tropical Agriculture 35:19−22

[17]

Chen W, Wang H, Wang T, Chang Y, Chen Y, et al. 2022. Three-dimensional fluorescence combined with chemometrics for origin tracing of Atractylodes Rhizoma. Spectroscopy and Spectral Analysis 42:2875−83

doi: 10.3964/j.issn.1000-0593(2022)09-2875-09
[18]

Zhang L, Qin J, Zhao W, Ma H, Chen X, et al. 2019. A Study on the Identification of Atractylodes Rhizoma from Different Origins. Anhui Agricultural Sciences 47(203-6):203−206,254

doi: 10.3969/j.issn.0517-6611.2019.23.059
[19]

Guo L, Mo R, Tan Y, Pan Y, Chen D. 2021. Analysis of differentially expressed genes in the transcriptome of Atractylodes macrocephala from different origins. Journal of Chinese Medicinal Materials 44(12):2787−92

doi: 10.13863/j.issn1001-4454.2021.12.009
[20]

Zhou J, Deng Z, Chen M, Xiao S, Zhou H, et al. 2022. Changes of chlorogenic acid content in neochlorogenic acid before and after processing of Atractylodes Rhizoma from different origins. Chinese Modern Chinese Medicine 24(12):2471−75

doi: 10.13313/j.issn.1673-4890.20220519002
[21]

Gu S, Li L, Huang H, Wang B, Zhang T. 2019. Antitumor, antiviral, and anti-Inflammatory efficacy of essential oils from Atractylodes macrocephala Koidz. produced with different processing methods. Molecules 24(16):2956

doi: 10.3390/molecules24162956
[22]

Xu S, Qi X, Liu Y, Liu Y, Lv X, et al. 2018. UPLC-MS/MS of Atractylenolide I, Atractylenolide II, Atractylenolide III, and Atractyloside A in rat plasma after oral administration of raw and wheat bran-processed atractylodis rhizoma. Molecules 23(12):3234

doi: 10.3390/molecules23123234
[23]

Sun X, Cui X, Wen H, Shan C, Wang X, et al. 2017. Influence of sulfur fumigation on the chemical profiles of Atractylodes macrocephala Koidz. evaluated by UFLC-QTOF-MS combined with multivariate statistical analysis. Journal of Pharmaceutical and Biomedical Analysis 141:19−31

doi: 10.1016/j.jpba.2017.03.003
[24]

Hwang MH, Seo JW, Han KJ, Kim MJ, Seong ES. 2022. Effect of artificial light treatment on the physiological property and biological activity of the aerial and underground parts of Atractylodes macrocephala. Agronomy 12:1485

doi: 10.3390/agronomy12071485
[25]

Hwang MH, Seo JW, Park BJ, Han KJ, Lee JG, et al. 2022. Evaluation of growth characteristics and biological activities of 'Dachul', a hybrid medicinal plant of Atractylodes macrocephala × Atractylodes japonica, under different artificial light sources. Plants 11(15):2035

doi: 10.3390/plants11152035
[26]

Zhou Y, Lu X, Chen L, Zhang P, Zhou J, et al. 2021. Polysaccharides from Chrysanthemun indicum L. enhance the accumulation of polysaccharide and atractylenolide in Atractylodes macrocephala Koidz. International Journal of Biological Macromolecules 190:649−59

doi: 10.1016/j.ijbiomac.2021.09.010
[27]

Du N, Tian W, Zheng D, Zhang X, Qin P. 2016. Extraction, purification and elicitor activities of polysaccharides from Chrysanthemum indicum. International Journal of Biological Macromolecules 82:347−54

doi: 10.1016/j.ijbiomac.2015.10.044
[28]

Xue W, Gao Y, Li Q, Lu Q, Bian Z, et al. 2020. Immunomodulatory activity-guided isolation and characterization of a novel polysaccharide from Atractylodis macrocephalae Koidz. International Journal of Biological Macromolecules 161:514−24

doi: 10.1016/j.ijbiomac.2020.06.003
[29]

Cui YS, Li YX, Jiang SL, Song AN, Fu Z, et al. 2020. Isolation, purification, and structural characterization of polysaccharides from Atractylodis Macrocephalae rhizoma and their immunostimulatory activity in RAW264.7 cells. International Journal of Biological Macromolecules 163:270−8

doi: 10.1016/j.ijbiomac.2020.06.269
[30]

Xu W, Guan R, Shi F, Du A, Hu S. 2017. Structural analysis and immunomodulatory effect of polysaccharide from Atractylodis macrocephalae Koidz. on bovine lymphocytes. Carbohydrate Polymers 174:1213−23

doi: 10.1016/j.carbpol.2017.07.041
[31]

Feng Y, Ji H, Dong X, Yu J, Liu A. 2019. Polysaccharide extracted from Atractylodes macrocephala Koidz (PAMK) induce apoptosis in transplanted H22 cells in mice. International Journal of Biological Macromolecules 137:604−11

doi: 10.1016/j.ijbiomac.2019.06.059
[32]

Miao YF, Gao XN, Xu DN, Li MC, Gao ZS, et al. 2021. Protective effect of the new prepared Atractylodes macrocephala Koidz polysaccharide on fatty liver hemorrhagic syndrome in laying hens. Poultry Science 100:938−48

doi: 10.1016/j.psj.2020.11.036
[33]

Guo S, Li W, Chen F, Yang S, Huang Y, et al. 2021. Polysaccharide of Atractylodes macrocephala Koidz regulates LPS-mediated mouse hepatitis through the TLR4-MyD88-NFκB signaling pathway. International Immunopharmacology 98:107692

doi: 10.1016/j.intimp.2021.107692
[34]

Wang R, Shan H, Zhang G, Li Q, Wang J, et al. 2022. An inulin-type fructan (AMP1-1) from Atractylodes macrocephala with anti-weightlessness bone loss activity. Carbohydrate Polymers 294:119742

doi: 10.1016/j.carbpol.2022.119742
[35]

Xu D, Li B, Cao N, Li W, Tian Y, et al. 2017. The protective effects of polysaccharide of Atractylodes macrocephala Koidz. (PAMK) on the chicken spleen under heat stress via antagonizing apoptosis and restoring the immune function. Oncotarget 8:70394−405

doi: 10.18632/oncotarget.19709
[36]

Xu D, Li W, Li B, Tian Y, Huang Y. 2017. The effect of selenium and polysaccharide of Atractylodes macrocephala Koidz. (PAMK) on endoplasmic reticulum stress and apoptosis in chicken spleen induced by heat stress. RSC Advances 7:7519−25

doi: 10.1039/C6RA27730F
[37]

Li W, Guo S, Xu D, Li B, Cao N, et al. 2018. Polysaccharide of Atractylodes macrocephala Koidz (PAMK) relieves immunosuppression in cyclophosphamide-treated geese by maintaining a humoral and cellular immune balance. Molecules 23(4):932

doi: 10.3390/molecules23040932
[38]

Li W, Xiang X, Cao N, Chen W, Tian Y, et al. 2021. Polysaccharide of Atractylodes macrocephala koidz activated T lymphocytes to alleviate cyclophosphamide-induced immunosuppression of geese through novel_mir2/CD28/AP-1 signal pathway. Poultry Science 100:101129

doi: 10.1016/j.psj.2021.101129
[39]

Li W, Xu D, Li B, Cao N, Guo S, et al. 2018. The polysaccharide of Atractylodes macrocephala koidz (PAMK) alleviates cyclophosphamide-mediated immunosuppression in geese, possibly through novel_mir2 targeting of CTLA4 to upregulate the TCR-NFAT pathway. RSC Advances 8:26837−48

doi: 10.1039/C8RA00368H
[40]

Xiang X, Cao N, Chen F, Qian L, Wang Y, et al. 2020. Polysaccharide of Atractylodes macrocephala Koidz (PAMK) alleviates cyclophosphamide-induced immunosuppression in mice by upregulating CD28/IP3R/PLCγ-1/AP-1/NFAT signal pathway. Frontiers in Pharmacology 11:529657

doi: 10.3389/fphar.2020.529657
[41]

Li BX, Li WY, Tian YB, Guo SX, Huang YM, et al. 2019. Polysaccharide of Atractylodes macrocephala Koidz enhances cytokine secretion by stimulating the TLR4-MyD88-NF-κB signaling pathway in the mouse spleen. Journal of Medicinal Food 22:937−43

doi: 10.1089/jmf.2018.4393
[42]

Xu W, Fang S, Cui X, Guan R, Wang Y, et al. 2019. Signaling pathway underlying splenocytes activation by polysaccharides from Atractylodis macrocephalae Koidz. Molecular Immunology 111:19−26

doi: 10.1016/j.molimm.2019.03.004
[43]

Xu W, Fang S, Wang Y, Zhang T, Hu S. 2020. Molecular mechanisms associated with macrophage activation by Rhizoma Atractylodis Macrocephalae polysaccharides. International Journal of Biological Macromolecules 147:616−28

doi: 10.1016/j.ijbiomac.2020.01.081
[44]

Wu Q, Li B, Li Y, Liu F, Yang L, et al. 2022. Effects of PAMK on lncRNA, miRNA, and mRNA expression profiles of thymic epithelial cells. Functional & Integrative Genomics 22:849−63

doi: 10.1007/s10142-022-00863-7
[45]

Xu W, Fang S, Wang Y, Chi X, Ma X, et al. 2020. Receptor and signaling pathway involved in bovine lymphocyte activation by Atractylodis macrocephalae polysaccharides. Carbohydrate Polymers 234:115906

doi: 10.1016/j.carbpol.2020.115906
[46]

Liu Z, Sun Y, Zhang J, Ou N, Gu P, et al. 2018. Immunopotentiation of polysaccharides of Atractylodes macrocephala Koidz-loaded nanostructured lipid carriers as an adjuvant. International Journal of Biological Macromolecules 120:768−74

doi: 10.1016/j.ijbiomac.2018.08.108
[47]

Sun Y, Zhang J, Bo R, Ou N, Gu P, et al. 2018. Polysaccharides of Atractylodes macrocephala Koidz-loaded nanostructured lipid carriers: optimization on conditions by RSM and immunological activity in vitro. Journal of Drug Delivery Science and Technology 44:305−13

doi: 10.1016/j.jddst.2018.01.005
[48]

Li W, Xiang X, Li B, Wang Y, Qian L, et al. 2021. PAMK relieves LPS-Induced enteritis and improves intestinal flora disorder in goslings. Evidence-Based Complementary and Alternative Medicine 2021:9721353

doi: 10.1155/2021/9721353
[49]

Feng W, Liu J, Tan Y, Ao H, Wang J, et al. 2020. Polysaccharides from Atractylodes macrocephala Koidz. ameliorate ulcerative colitis via extensive modification of gut microbiota and host metabolism. Food Research International 138:109777

doi: 10.1016/j.foodres.2020.109777
[50]

Kai L, Zong X, Jiang Q, Lu Z, Wang F, et al. 2022. Protective effects of polysaccharides from Atractylodes macrocephalae Koidz. against dextran sulfate sodium induced intestinal mucosal injury on mice. International Journal of Biological Macromolecules 195:142−51

doi: 10.1016/j.ijbiomac.2021.12.042
[51]

Zong X, Xiao X, Kai L, Cheng Y, Fu J, et al. 2021. Atractylodis macrocephalae polysaccharides protect against DSS-induced intestinal injury through a novel lncRNA ITSN1-OT1. International Journal of Biological Macromolecules 167:76−84

doi: 10.1016/j.ijbiomac.2020.11.144
[52]

Zheng Z, Wang J. 2022. Bone marrow mesenchymal stem cells combined with Atractylodes macrocephala polysaccharide attenuate ulcerative colitis. Bioengineered 13:824−33

doi: 10.1080/21655979.2021.2012954
[53]

Feng Y, Ji H, Dong X, Liu A. 2019. An alcohol-soluble polysaccharide from Atractylodes macrocephala Koidz induces apoptosis of Eca-109 cells. Carbohydrate Polymers 226:115136

doi: 10.1016/j.carbpol.2019.115136
[54]

Feng Z, Yang R, Wu L, Tang S, Wei B, et al. 2019. Atractylodes macrocephala polysaccharides regulate the innate immunity of colorectal cancer cells by modulating the TLR4 signaling pathway. OncoTargets and Therapy 12:7111−21

doi: 10.2147/OTT.S219623
[55]

Zhang D, Li X, Song D, Chen S, Zhang Z, et al. 2022. Atractylenolide III induces apoptosis by regulating the Bax/Bcl-2 signaling pathway in human colorectal cancer HCT-116 Cells in vitro and in vivo. Anti-cancer Drugs 33:30−47

doi: 10.1097/CAD.0000000000001136
[56]

Tian S, Yu H. 2017. Atractylenolide II Inhibits proliferation, motility and induces apoptosis in human gastric carcinoma cell lines HGC-27 and AGS. Molecules 22(11):1886

doi: 10.3390/molecules22111886
[57]

Wang T, Long F, Zhang X, Yang Y, Jiang X, Wang L. 2017. Chemopreventive effects of atractylenolide II on mammary tumorigenesis via activating Nrf2-ARE pathway. Oncotarget 8:77500−14

doi: 10.18632/oncotarget.20546
[58]

Chan KWK, Chung HY, Ho WS. 2020. Anti-tumor activity of Atractylenolide I in human colon adenocarcinoma in vitro. Molecules 25(1):212

doi: 10.3390/molecules25010212
[59]

Wang M, Li XZ, Zhang MX, Ye QY, Chen YX, Chang X. 2021. Atractylenolide-I sensitizes triple-negative breast cancer cells to paclitaxel by blocking CTGF expression and fibroblast activation. Frontiers in Oncology 11:738534

doi: 10.3389/fonc.2021.738534
[60]

Long F, Wang T, Jia P, Wang H, Qing Y, et al. 2017. Anti-tumor effects of Atractylenolide-I on human ovarian cancer cells. Medical Science Monitor 23:571−79

doi: 10.12659/MSM.902886
[61]

Tang D, Xu X, Ying J, Xie T, Cao G. 2020. Transfer of metastatic traits via miR-200c in extracellular vesicles derived from colorectal cancer stem cells is inhibited by atractylenolide I. Clinical and Translational Medicine 10:e139

doi: 10.1002/ctm2.139
[62]

Li Y, Wang Y, Liu Z, Guo X, Miao Z, et al. 2020. Atractylenolide I induces apoptosis and suppresses glycolysis by blocking the JAK2/STAT3 signaling pathway in colorectal cancer cells. Frontiers in Pharmacology 11:273

doi: 10.3389/fphar.2020.00273
[63]

Xiao Q, Zheng F, Wu J, Tang Q, Wang W, et al. 2017. Activation of ERK and mutual regulation of Stat3 and SP1 contribute to inhibition of PDK1 expression by Atractylenolide-1 in human lung cancer cells. Cellular Physiology and Biochemistry 43:2353−66

doi: 10.1159/000484387
[64]

Zhang N, Liu C, Sun TM, Ran XK, Kang TG, et al. 2017. Two new compounds from Atractylodes macrocephala with neuroprotective activity. Journal of Asian Natural Products Research 19:35−41

doi: 10.1080/10286020.2016.1247351
[65]

Si JG, Zhang HX, Yu M, Li LY, Zhang HW, et al. 2021. Sesquiterpenoids from the rhizomes of Atractylodes macrocephala and their protection against lipopolysaccharide-induced neuroinflammation in microglia BV-2 cells. Journal of Functional Foods 83:104541

doi: 10.1016/j.jff.2021.104541
[66]

Zhao TY, Liu ZQ, Ma SF, Bo Y, Guo FF, et al. 2020. Biatractylolide reduced amyloid beta protein-induced memory impairment in rats. Pakistan Journal of Zoology 52:1031−38

doi: 10.17582/journal.pjz/20190910030913
[67]

Zhu L, Ning N, Li Y, Zhang QF, Xie YC, et al. 2017. Biatractylolide modulates PI3K-Akt-GSK3β-dependent pathways to protect against glutamate-induced cell damage in PC12 and SH-SY5Y cells. Evidence-Based Complementary and Alternative Medicine 2017:1291458

doi: 10.1155/2017/1291458
[68]

More S, Choi DK. 2017. Neuroprotective role of Atractylenolide-I in an in vitro and in vivo model of Parkinson's disease. Nutrients 9(5):451

doi: 10.3390/nu9050451
[69]

Gao H, Zhu X, Xi Y, Li Q, Shen Z, et al. 2018. Anti-depressant-like effect of atractylenolide I in a mouse model of depression induced by chronic unpredictable mild stress. Experimental and Therapeutic Medicine 15:1574−79

doi: 10.3892/etm.2017.5517
[70]

Zhu Q, Lin M, Zhuo W, Li Y. 2021. Chemical Constituents from the wild Atractylodes macrocephala Koidz and acetylcholinesterase inhibitory activity evaluation as well as molecular docking study. Molecules 26(23):7299

doi: 10.3390/molecules26237299
[71]

Zhou K, Chen J, Wu J, Wu Q, Jia C, et al. 2019. Atractylenolide III ameliorates cerebral ischemic injury and neuroinflammation associated with inhibiting JAK2/STAT3/Drp1-dependent mitochondrial fission in microglia. Phytomedicine 59:152922

doi: 10.1016/j.phymed.2019.152922
[72]

Zhou Y, Huang S, Wu F, Zheng Q, Zhang F, et al. 2021. Atractylenolide III reduces depressive-and anxiogenic-like behaviors in rat depression models. Neuroscience Letters 759:136050

doi: 10.1016/j.neulet.2021.136050
[73]

Zhu S, Wang Z, Yu J, Yin L, Zhu A. 2021. Atractylenolide III alleviates isoflurane-induced injury in rat hippocampal neurons by activating the PI3K/Akt/mTOR pathway. Journal of Food Biochemistry 45:e13892

doi: 10.1111/jfbc.13892
[74]

Wang SY, Ding LF, Su J, Peng LY, Song LD, Wu XD. 2018. Atractylmacrols A-E, sesquiterpenes from the rhizomes of Atractylodes macrocephala. Phytochemistry Letters 23:127−31

doi: 10.1016/j.phytol.2017.11.021
[75]

Jeong D, Dong GZ, Lee HJ, Ryu JH. 2019. Anti-Inflammatory compounds from Atractylodes macrocephala. Molecules 24:1859

doi: 10.3390/molecules24101859
[76]

Jin HG, Kim KW, Li J, Lee DY, Yoon D, et al. 2022. Anti-inflammatory components isolated from Atractylodes macrocephala in LPS-induced RAW264.7 macrophages and BV2 microglial cells. Applied Biological Chemistry 65(1):11

doi: 10.1186/s13765-022-00673-2
[77]

Ren Y, Jiang WW, Luo CL, Zhang XH, Huang MJ. 2021. Atractylenolide III ameliorates TNBS-induced intestinal inflammation in mice by reducing oxidative stress and regulating intestinal flora. Chemistry & Biodiversity 18(8):e2001001

doi: 10.1002/cbdv.202001001
[78]

Novianti E, Katsuura G, Kawamura N, Asakawa A, Inui A. 2021. Atractylenolide-III suppresses lipopolysaccharide-induced inflammation via downregulation of toll-like receptor 4 in mouse microglia. Heliyon 7:E08269

doi: 10.1016/j.heliyon.2021.e08269
[79]

Xue MT, Sheng WJ, Song X, Shi YJ, Geng ZJ, et al. 2022. Atractylenolide III ameliorates spinal cord injury in rats by modulating microglial/macrophage polarization. CNS Neuroscience & Therapeutics 28:1059−71

doi: 10.1111/cns.13839
[80]

Han J, Li W, Shi G, Huang Y, Sun X, et al. 2022. Atractylenolide III Improves mitochondrial function and protects against ulcerative colitis by activating AMPK/SIRT1/PGC-1α. Mediators of Inflammation 2022:9129984

doi: 10.1155/2022/9129984
[81]

Frank A, Groll M. 2017. The methylerythritol phosphate pathway to isoprenoids. Chemical Reviews 117:5675−703

doi: 10.1021/acs.chemrev.6b00537
[82]

Liao P, Wang H, Hemmerlin A, Nagegowda DA, Bach TJ, et al. 2014. Past achievements, current status and future perspectives of studies on 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS) in the mevalonate (MVA) pathway. Plant Cell Reports 33:1005−22

doi: 10.1007/s00299-014-1592-9
[83]

Campbell M, Hahn FM, Poulter CD, Leustek T. 1998. Analysis of the isopentenyl diphosphate isomerase gene family from Arabidopsis thaliana. Plant Molecular Biology 36:323−28

doi: 10.1023/A:1005935516274
[84]

Wright LP, Rohwer JM, Ghirardo A, Hammerbacher A, Ortiz-Alcaide M, et al. 2014. Deoxyxylulose 5-phosphate synthase controls flux through the methylerythritol 4-phosphate pathway in arabidopsis. Plant Physiology 165:1488−504

doi: 10.1104/pp.114.245191
[85]

Dubey VS, Bhalla R, Luthra R. 2003. An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants. Journal of Biosciences 28:637−46

doi: 10.1007/BF02703339
[86]

Chen F, Wei YX, Zhang JM, Sang XM, Dai CC. 2017. Transcriptomics analysis investigates sesquiterpenoids accumulation pattern in different tissues of Atractylodes lancea (Thunb.) DC. plantlet. Plant Cell, Tissue and Organ Culture (PCTOC) 130:73−90

doi: 10.1007/s11240-017-1205-8
[87]

Zhao J, Sun C, Shi F, Ma S, Zheng J, et al. 2021. Comparative transcriptome analysis reveals sesquiterpenoid biosynthesis among 1-, 2- and 3-year old Atractylodes chinensis. BMC Plant Biology 21:354

doi: 10.1186/s12870-021-03131-1
[88]

Ahmed S, Zhan C, Yang Y, Wang X, Yang T, et al. 2016. The Transcript profile of a traditional Chinese medicine, Atractylodes lancea, revealing its sesquiterpenoid biosynthesis of the major active components. PLoS One 11:e0151975

doi: 10.1371/journal.pone.0151975
[89]

Huang Q, Huang X, Deng J, Liu H, Liu Y, et al. 2016. Differential gene expression between leaf and rhizome in Atractylodes lancea: A comparative transcriptome analysis. Frontiers in Plant Science 7:348

doi: 10.3389/fpls.2016.00348
[90]

Ruan Q, Wang J, Xiao C, Yang Y, Luo E, et al. 2021. Differential transcriptome analysis of genes associated with the rhizome growth and sesquiterpene biosynthesis in Atractylodes macrocephala. Industrial Crops and Products 173:114141

doi: 10.1016/j.indcrop.2021.114141
[91]

Yang G, Li H, Jin Y, Dong L, Mo Y, Luo J. 2019. Analysis of genes related to biosynthesis of sesquiterpene in Atractylodes macrocephala by transcriptome. Plant Physiology Journal 55:1827−38

doi: 10.13592/j.cnki.ppj.2019.0081
[92]

Zhang J, Gu X, Zhao Y, Zheng Y, Wang Q, et al. 2022. Differences in gene expression and endophytic bacterial diversity in Atractylodes macrocephala Koidz. rhizomes from different growth years. Canadian Journal of Microbiology 68:353−66

doi: 10.1139/cjm-2021-0262
[93]

Jiang J, Feng L, Liu Y, Jiang WD, Hu K, et al. 2013. Mechanistic target of rapamycin in common carp: cDNA cloning, characterization, and tissue expression. Gene 512:566−72

doi: 10.1016/j.gene.2012.08.006
[94]

Zhang P, Zheng F, Chen L, Lu X, Tian W. 2020. CIP elicitors on the defense response of A. macrocephala and its related gene expression analysis. Journal of Plant Physiology 245:153107

doi: 10.1016/j.jplph.2019.153107
[95]

Yang W, Zhang Y, Wu W, Huang L, Guo D, et al. 2017. Approaches to establish Q-markers for the quality standards of traditional Chinese medicines. Acta Pharmaceutica Sinica B 7:439−46

doi: 10.1016/j.apsb.2017.04.012
[96]

Liu Y, Hu M, Chen L, Su Q. 2019. The anti-inflammatory and anti-oxidant properties of the aerial part of Atractylodes macrocephala and the active constituents' analysis by HPLC-ESI-MS/MS. South African Journal of Botany 125:86−91

doi: 10.1016/j.sajb.2019.07.003
[97]

Qian YX, Li WW, Wang HM, Hu WD, Wang HD, et al. 2021. A four-dimensional separation approach by offline 2D-LC/IM-TOF-MS in combination with database-driven computational peak annotation facilitating the in-depth characterization of the multicomponents from Atractylodis Macrocephalae rhizoma (Atractylodes macrocephala). Arabian Journal of Chemistry 14(2):102957

doi: 10.1016/j.arabjc.2020.102957
[98]

Kim MI, Kim JH, Syed AS, Kim YM, Choe KK, et al. 2018. Application of centrifugal partition chromatography for bioactivity-guided purification of antioxidant-response-element-inducing constituents from Atractylodis Rhizoma Alba. Molecules 23(9):2274

doi: 10.3390/molecules23092274
[99]

Shirahata T, Ishikawa H, Kudo T, Takada Y, Hoshino A, et al. 2022. Metabolic fingerprinting for discrimination of DNA-authenticated Atractylodes plants using 1H NMR spectroscopy. Journal of Natural Medicines 75(3):475−88

doi: 10.1007/s11418-020-01471-0
[100]

Sun JY, Guo X, Smith MA. 2017. Identification of crepenynic acid in the seed oil of Atractylodes lancea and A. macrocephala. Journal of the American Oil Chemists Society 94:655−60

doi: 10.1007/s11746-017-2974-2
[101]

Zhao J, Jin X, Yang C, Quinto M, Shang H, et al. 2020. Gas purge micro solvent extraction: A rapid and powerful tool for essential oil chromatographic fingerprints. Journal of Pharmaceutical and Biomedical Analysis 187:113339

doi: 10.1016/j.jpba.2020.113339