[1]

Zubieta C, He XZ, Dixon RA, Noel JP. 2001. Structures of two natural product methyltransferases reveal the basis for substrate specificity in plant O-methyltransferases. Nature Structural Biology 8:271−79

doi: 10.1038/85029
[2]

Zhang X, Shen X, Sun X, Wang J, Yuan Q. 2021. Application of methyltransferases in microbial synthesis of natural products. Chinese Journal of Biotechnology 37:1869−86

doi: 10.13345/j.cjb.200742
[3]

Ross JR, Nam KH, D’Auria JC, Pichersky E. 1999. S-Adenosyl-L methionine: salicylic acid carboxyl methyltransferase, an enzyme involved in floral scent production and plant defense, represents a new class of plant methyltransferases. Archives of Biochemistry and Biophysics 367:9−16

doi: 10.1006/abbi.1999.1255
[4]

Murfitt LM, Kolosova N, Mann CJ, Dudareva N. 2000. Purification and characterization of S-adenosyl-l-methionine: benzoic acid carboxyl methyltransferase, the enzyme responsible for biosynthesis of the volatile ester methyl benzoate in flowers of Antirrhinum majus. Archives of Biochemistry and Biophysics 382:145−51

doi: 10.1006/abbi.2000.2008
[5]

Kato M, Mizuno K, Fujimura T, Iwama M, Irie M, et al. 1999. Purification and characterization of caffeine synthase from tea leaves. Plant Physiology 120:579−86

doi: 10.1104/pp.120.2.579
[6]

Qu L, Li S, Xing S. 2010. Methylation of phytohormones by the SABATH methyltransferases. Chinese Science Bulletin 55:2211−18

doi: 10.1007/s11434-010-3245-x
[7]

Wang B, Li M, Yuan Y, Liu S. 2019. Genome-wide comprehensive analysis of the SABATH gene family in Arabidopsis and rice. Evolutionary Bioinformatics 15:1176934319860864

doi: 10.1177/1176934319860864
[8]

Han X, Yang Q, Liu Y, Yang Z, Wang X, et al. 2018. Evolution and function of the Populus SABATH family reveal that a single amino acid change results in a substrate switch. Plant and Cell Physiology 59:392−403

doi: 10.1093/pcp/pcx198
[9]

Wang B, Wang S, Wang Z. 2017. Genome-wide comprehensive analysis the molecular phylogenetic evaluation and tissue-specific expression of SABATH gene family in Salvia miltiorrhiza. Genes 8:365

doi: 10.3390/genes8120365
[10]

Wei X, Tao K, Zhang J, Lu S, Chen S, et al. 2021. Identification of SABATH family members in Solanum lycopersicum and their expression patterns under abiotic/biotic stresses. Plant Molecular Biology Reporter 39:403−18

doi: 10.1007/s11105-020-01258-3
[11]

Guo Y, Qiao D, Yang C, Chen J, Li Y, et al. 2020. Genome-wide identification and expression analysis of SABATH methyltransferases in tea plant (Camellia sinensis): insights into their roles in plant defense responses. Plant Signaling & Behavior 15:1804684

doi: 10.1080/15592324.2020.1804684
[12]

Seo HS, Song JT, Cheong JJ, Lee YH, Lee YW, et al. 2001. Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses. Proceedings of the National Academy of Sciences of the United States of America 98:4788−93

doi: 10.1073/pnas.081557298
[13]

Chung PJ, Park BS, Wang H, Liu J, Jang IC, et al. 2016. Light-inducible miR163 targets PXMT1 transcripts to promote seed germination and primary root elongation in Arabidopsis. Plant Physiology 170:1772−82

doi: 10.1104/pp.15.01188
[14]

Qin G, Gu H, Zhao Y, Ma Z, Shi G, et al. 2005. An indole-3-acetic acid carboxyl methyltransferase regulates Arabidopsis leaf development. The Plant Cell 17:2693−704

doi: 10.1105/tpc.105.034959
[15]

Yang Y, Yuan JS, Ross J, Noel JP, Pichersky E, et al. 2006. An Arabidopsis thaliana methyltransferase capable of methylating farnesoic acid. Archives of Biochemistry Biophysics 448:123−32

doi: 10.1016/j.abb.2005.08.006
[16]

Varbanova M, Yamaguchi S, Yang Y, McKelvey K, Hanada A, et al. 2007. Methylation of gibberellins by Arabidopsis GAMT1 and GAMT2. The Plant Cell 19:32−45

doi: 10.1105/tpc.106.044602
[17]

Hippauf F, Michalsky E, Huang R, Preissner R, Barkman TJ, et al. 2010. Enzymatic, expression and structural divergences among carboxyl O-methyltransferases after gene duplication and speciation in Nicotiana. Plant Molecular Biology 72:311−30

doi: 10.1007/s11103-009-9572-0
[18]

Wu R, Zhang F, Liu L, Li W, Pichersky E, et al. 2018. MeNA, controlled by reversible methylation of Nicotinate, is an NAD precursor that undergoes long-distance transport in Arabidopsis. Molecular Plant 11:1264−77

doi: 10.1016/j.molp.2018.07.003
[19]

Mashiguchi K, Seto Y, Onozuka Y, Suzuki S, Takemoto K, et al. 2022. A carlactonoic acid methyltransferase that contributes to the inhibition of shoot branching in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 119:e2111565119

doi: 10.1073/pnas.2111565119
[20]

Park SW, Kaimoyo E, Kumar D, Mosher S, Klessig DF. 2007. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318:113−16

doi: 10.1126/science.1147113
[21]

Wu J, Wang L, Baldwin IT. 2008. Methyl jasmonate-elicited herbivore resistance: does MeJA function as a signal without being hydrolyzed to JA? Planta 227:1161−68

doi: 10.1007/s00425-008-0690-8
[22]

Stitz M, Hartl M, Baldwin IT, Gaquerel E. 2014. Jasmonoyl-L-isoleucine coordinates metabolic networks required for anthesis and floral attractant emission in wild tobacco (Nicotiana attenuata). The Plant Cell 26:3964−83

doi: 10.1105/tpc.114.128165
[23]

Li L, Hou X, Tsuge T, Ding M, Aoyama T, et al. 2008. The possible action mechanisms of indole-3-acetic acid methyl ester in Arabidopsis. Plant Cell Reports 27:575−84

doi: 10.1007/s00299-007-0458-9
[24]

McCarthy AA, Biget L, Lin C, Petiard V, Tanksley SD, et al. 2007. Cloning, expression, crystallization and preliminary X-ray analysis of the XMT and DXMT N-methyltransferases from Coffea canephora (robusta). Acta Crystallographica Section F F63:304−307

doi: 10.1107/S1744309107009268
[25]

Kapteyn J, Qualley AV, Xie Z, Fridman E, Dudareva N, et al. 2007. Evolution of cinnamate/p-coumarate carboxyl methyltransferases and their role in the biosynthesis of methylcinnamate. The Plant Cell 19:3212−29

doi: 10.1105/tpc.107.054155
[26]

Murata J, Roepke J, Gordon H, de Luca V. 2008. The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. The Plant Cell 20:524−42

doi: 10.1105/tpc.107.056630
[27]

Asada K, Salim V, Masada-Atsumi S, Edmunds E, Nagatoshi M, et al. 2013. A 7-deoxyloganetic acid glucosyltransferase contributes a key step in secologanin biosynthesis in Madagascar periwinkle. The Plant Cell 25:4123−34

doi: 10.1105/tpc.113.115154
[28]

Köllner TG, Lenk C, Zhao N, Seidl-Adams I, Gershenzon J, et al. 2010. Herbivore-induced SABATH methyltransferases of maize that methylate anthranilic acid using s-adenosyl-L-methionine. Plant Physiology 153:1795−807

doi: 10.1104/pp.110.158360
[29]

Pandey A, Negi PS. 2016. Traditional uses, phytochemistry and pharmacological properties of Neolamarckia cadamba: a review. Journal of Ethnopharmacology 181:118−35

doi: 10.1016/j.jep.2016.01.036
[30]

Nie M, Huang J, Huang J, Chen Z, Lin L, et al. 2022. Differences in the components of Neolamarckia cadamba from different provenance and the drug resistance reversal activity of characteristic alkaloid. Industrial Crops and Products 186:115145

doi: 10.1016/j.indcrop.2022.115145
[31]

Yuan H, Zhao Y, Qin X, Liu Y, Yu H, et al. 2020. Anti-inflammatory and analgesic activities of Neolamarckia cadamba and its bioactive monoterpenoid indole alkaloids. Journal of Ethnopharmacology 260:113103

doi: 10.1016/j.jep.2020.113103
[32]

Dolai N, Karmakar I, Suresh Kumar RB, Kar B, Bala A, et al. 2012. Evaluation of antitumor activity and in vivo antioxidant status of Anthocephalus cadamba on Ehrlich ascites carcinoma treated mice. Journal of Ethnopharmacology 142:865−70

doi: 10.1016/j.jep.2012.05.050
[33]

Li J, Zhang D, Que Q, Chen X, Ouyang K. 2019. Plant regeneration and Agrobacterium-mediated transformation of the miracle tree Neolamarckia cadamba. Industrial Crops and Products 130:443−49

doi: 10.1016/j.indcrop.2019.01.009
[34]

Huang H, Wei Y, Zhai Y, Ouyang K, Chen X, et al. 2020. High frequency regeneration of plants via callus-mediated organogenesis from cotyledon and hypocotyl cultures in a multipurpose tropical tree (Neolamarkia Cadamba). Scientific Reports 10:4558

doi: 10.1038/s41598-020-61612-z
[35]

Zhao X, Hu X, Ouyang K, Yang J, Que Q, et al. 2022. Chromosome-level assembly of the Neolamarckia cadamba genome provides insights into the evolution of cadambine biosynthesis. The Plant Journal 109:891−908

doi: 10.1111/tpj.15600
[36]

Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, et al. 2021. Pfam: the protein families database in 2021. Nucleic Acids Research 49:D412−D419

doi: 10.1093/nar/gkaa913
[37]

Letunic I, Khedkar S, Bork P. 2021. SMART: recent updates, new developments and status in 2020. Nucleic Acids Research 49:D458−D460

doi: 10.1093/nar/gkaa937
[38]

Joshi CP, Chiang VL. 1998. Conserved sequence motifs in plant S-adenosyl-L-methionine-dependent methyltransferases. Plant Molecular Biology 37:663−74

doi: 10.1023/A:1006035210889
[39]

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and evolution 35:1547−49

doi: 10.1093/molbev/msy096
[40]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202

doi: 10.1016/j.molp.2020.06.009
[41]

Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, et al. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30:325−27

doi: 10.1093/nar/30.1.325
[42]

Jin J, Tian F, Yang D, Meng Y, Kong L, et al. 2017. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Research 45:D1040−D1045

doi: 10.1093/nar/gkw982
[43]

Huang T, Long J, Liu S, Yang Z, Zhu Q, et al. 2018. Selection and validation of reference genes for mRNA expression by quantitative real-time PCR analysis in Neolamarckia cadamba. Scientific Reports 8:9311

doi: 10.1038/s41598-018-27633-5
[44]

Yang M, Wang Q, Liu Y, Hao X, Wang C, et al. 2021. Divergent camptothecin biosynthetic pathway in Ophiorrhiza pumila. BMC Biology 19:122

doi: 10.1186/s12915-021-01051-y
[45]

Salim V, Yu F, Altarejos J, De Luca V. 2013. Virus-induced gene silencing identifies Catharanthus roseus 7-deoxyloganic acid-7-hydroxylase, a step in iridoid and monoterpene indole alkaloid biosynthesis. The Plant Journal 76:754−65

doi: 10.1111/tpj.12330
[46]

André D, Marcon A, Lee KC, Goretti D, Zhang B, et al. 2022. FLOWERING LOCUS T paralogs control the annual growth cycle in Populus trees. Current Biology 32:2988−96

doi: 10.1016/j.cub.2022.05.023
[47]

Maher C, Stein L, Ware D. 2006. Evolution of Arabidopsis microRNA families through duplication events. Genome Research 16:510−19

doi: 10.1101/gr.4680506
[48]

Petronikolou N, Hollatz AJ, Schuler MA, Nair SK. 2018. Loganic acid methyltransferase: insights into the specificity of methylation on an iridoid glycoside. ChemBioChem 19:784−88

doi: 10.1002/cbic.201700679
[49]

Hao X, Wang C, Zhou W, Ruan Q, Xie C, et al. 2023. OpNAC1 transcription factor regulates the biosynthesis of the anticancer drug camptothecin by targeting loganic acid O-methyltransferase in Ophiorrhiza pumila. Journal of Integrative Plant Biology 65:133−49

doi: 10.1111/jipb.13377
[50]

Xiang L, Zhu S, Zhao T, Zhang M, Liu W, et al. 2015. Enhancement of artemisinin content and relative expression of genes of artemisinin biosynthesis in Artemisia annua by exogenous MeJA treatment. Plant Growth Regulation 75:435−41

doi: 10.1007/s10725-014-0004-z
[51]

Yang Y, Zhang C, Liu X, Wei Y, Wu N. 2018. Effects of methyl jasmonate on metabolism of topical alkaloids and expression of relate genes in Atropa belladonna. China Journal of Chinese Materia Medica 43:4044−49

doi: 10.19540/j.cnki.cjcmm.20180726.018
[52]

Zhang X, Liu J, Liu Y, Wang Y, Abozeid A, et al. 2018. Metabolomics analysis reveals that ethylene and methyl jasmonate regulate different branch pathways to promote the accumulation of terpenoid indole alkaloids in Catharanthus roseus. Journal of Natural Products 81:335−42

doi: 10.1021/acs.jnatprod.7b00782
[53]

Pu X, Gao H, Wang M, Zhang J, Shan J, et al. 2022. Integrative analysis of elicitor-induced camptothecin biosynthesis in Camptotheca acuminata plantlets through a combined omics approach. Frontiers in Plant Science 13:851077

doi: 10.3389/fpls.2022.851077
[54]

Chen Y, Wang Y, Lyu P, Chen L, Shen C, et al. 2019. Comparative transcriptomic analysis reveal the regulation mechanism underlying MeJA-induced accumulation of alkaloids in Dendrobium officinale. Journal of Plant Research 132:419−29

doi: 10.1007/s10265-019-01099-6
[55]

Gurkok T, Turktas M, Parmaksiz I, Unver T. 2015. Transcriptome profiling of alkaloid biosynthesis in elicitor induced Opium Poppy. Plant Molecular Biology Reporter 33:673−88

doi: 10.1007/s11105-014-0772-7
[56]

Chaiprasongsuk M, Zhang C, Qian P, Chen X, Li G, et al. 2018. Biochemical characterization in Norway spruce (Picea abies) of SABATH methyltransferases that methylate phytohormones. Phytochemistry 149:146−54

doi: 10.1016/j.phytochem.2018.02.010
[57]

Aygören AS, Güneş E, Muslu S, Kasapoğlu AG, Yiğider E, et al. 2022. Genome-wide analysis and characterization of SABATH gene family in Phaseolus vulgaris genotypes subject to melatonin under drought and salinity stresses. Plant Molecular Biology Reporter 319:242−59

doi: 10.1007/s11105-022-01363-5
[58]

Zhao N, Ferrer JL, Ross J, Guan J, Yang Y, et al. 2008. Structural, biochemical, and phylogenetic analyses suggest that indole-3-acetic acid methyltransferase is an evolutionarily ancient member of the SABATH family. Plant Physiology 146:455−67

doi: 10.1104/pp.107.110049