[1] |
Xie L, Shen M, Wang Z, Xie J. 2021. Structure, function and food applications of carboxymethylated polysaccharides: a comprehensive review. Trends in Food Science & Technology 118:539−57 doi: 10.1016/j.jpgs.2021.09.016 |
[2] |
Masci A, Carradori S, Casadei M A, Paolicelli P, Petralito S, et al. 2018. Lycium barbarum polysaccharides: Extraction, purification, structural characterisation and evidence about hypoglycaemic and hypolipidaemic effects. A review. Food Chemistry 254:377−89 doi: 10.1016/j.foodchem.2018.01.176 |
[3] |
Huang Y, Chen H, Zhang K, Lu Y, Wu Q, et al. 2022. Extraction, purification, structural characterization, and gut microbiota relationship of polysaccharides: a review. International Journal of Biological Macromolecules 213:967−86 doi: 10.1016/j.ijbiomac.2022.06.049 |
[4] |
Wang S, Li W, Sun P, Xu Z, Ding Y, et al. 2020. Selective extraction of myoglobin from human serum with antibody-biomimetic magnetic nanoparticles. Talanta 219:121327 doi: 10.1016/j.talanta.2020.121327 |
[5] |
Bie Z, Chen Y, Ye J, Wang S, Liu Z. 2015. Boronate-affinity glycan-oriented surface imprinting: a new strategy to mimic lectins for the recognition of an intact glycoprotein and its characteristic fragments. Angewandte Chemie International Edition 54:10211−15 doi: 10.1002/anie.201503066 |
[6] |
Wang X, Li G, Row KH. 2017. Magnetic graphene oxide modified by imidazole-based ionic liquids for the magnetic-based solid-phase extraction of polysaccharides from brown alga. Journal of Separation Science 40:3301−10 doi: 10.1002/jssc.201700393 |
[7] |
Liu Z, He H. 2017. Synthesis and applications of boronate affinity materials: from class selectivity to biomimetic specificity. Accounts of Chemical Research 50:2185−93 doi: 10.1021/acs.accounts.7b00179 |
[8] |
Li D, Chen Y, Liu Z. 2015. Boronate affinity materials for separation and molecular recognition: structure, properties and applications. Chemical Society Reviews 44:8097−123 doi: 10.1039/C5CS00013K |
[9] |
Chen Y, Huang A, Zhang Y, Bie Z. 2019. Recent advances of boronate affinity materials in sample preparation. Analytica Chimica Acta 1076:1−17 doi: 10.1016/j.aca.2019.04.050 |
[10] |
Wang S, Ye J, Bie Z, Liu Z. 2014. Affinity-tunable specific recognition of glycoproteins via boronate affinity-based controllable oriented surface imprinting. Chemical Science 5:1135−40 doi: 10.1039/c3sc52986j |
[11] |
Wang S, Ye J, Li X, Liu Z. 2016. Boronate affinity fluorescent nanoparticles for Förster resonance energy transfer inhibition assay of cis-diol biomolecules. Analytical Chemistry 88:5088−96 doi: 10.1021/acs.analchem.5b04507 |
[12] |
Fan Y, Zhou X, Huang G. 2022. Preparation, structure, and properties of tea polysaccharide. Chemical Biology & Drug Design 99:75−82 doi: 10.1111/cbdd.13924 |
[13] |
Pan X, Chen Y, Zhao P, Li D, Liu Z. 2015. Highly efficient solid-phase labeling of saccharides within boronic acid functionalized mesoporous silica nanoparticles. Angewandte Chemie International Edition 54:6173−76 doi: 10.1002/anie.201500331 |
[14] |
Wang W, Chen F, Wang Y, Wang L, Fu H, et al. 2018. Optimization of reactions between reducing sugars and 1-phenyl-3-methyl-5-pyrazolone (PMP) by response surface methodology. Food Chemistry 254:158−64 doi: 10.1016/j.foodchem.2018.02.001 |
[15] |
Yang X, Wei S, Lu X, Qiao X, Simal-Gandara J, et al. 2021. A neutral polysaccharide with a triple helix structure from ginger: characterization and immunomodulatory activity. Food Chemistry 350:129261 doi: 10.1016/j.foodchem.2021.129261 |
[16] |
Wang S, He Z, Li W, Zhao J, Chen T, et al. 2020. Reshaping of pipette tip: a facile and practical strategy for sorbent packing-free solid phase extraction. Analytica Chimica Acta 1100:47−56 doi: 10.1016/j.aca.2019.11.060 |
[17] |
Wang S, Li W, Yuan Z, Jin Q, Ding Z, et al. 2022. Semiquantitative naked-eye detection of synthetic food colorants using highly-branched pipette tip as an all-in-one device. Analytica Chimica Acta 1211:339901 doi: 10.1016/j.aca.2022.339901 |
[18] |
Wang H, Bie Z, Lü C, Liu Z. 2013. Magnetic nanoparticles with dendrimer-assisted boronate avidity for the selective enrichment of trace glycoproteins. Chemical Science 4:4298−303 doi: 10.1039/c3sc51623g |
[19] |
Wang S, Wen Y, Wang Y, Ma Y, Liu Z. 2017. Pattern recognition of cells via multiplexed imaging with monosaccharide-imprinted quantum dots. Analytical Chemistry 89:5646−52 doi: 10.1021/acs.analchem.7b00965 |
[20] |
Ye J, Chen Y, Liu Z. 2014. A boronate affinity sandwich assay: an appealing alternative to immunoassays for the determination of glycoproteins. Angewandte Chemie International Edition 53:10386−89 doi: 10.1002/anie.201405525 |
[21] |
Bi X, Liu Z. 2014. Enzyme activity assay of glycoprotein enzymes based on a boronate affinity molecularly imprinted 96-well microplate. Analytical Chemistry 86:12382−89 doi: 10.1021/ac503778w |
[22] |
Lü C, Li H, Wang H, Liu Z. 2013. Probing the interactions between boronic acids and cis-diol-containing biomolecules by affinity capillary electrophoresis. Analytical Chemistry 85:2361−69 doi: 10.1021/ac3033917 |
[23] |
Otsuka H, Uchimura E, Koshino H, Okano T, Kataoka K. 2003. Anomalous binding profile of phenylboronic acid with N-acetylneuraminic acid (Neu5Ac) in aqueous solution with varying pH. Journal of the American Chemical Society 125:3493−502 doi: 10.1021/ja021303r |
[24] |
Djanashvili K, Frullano L, Peters JA. 2005. Molecular recognition of sialic acid end groups by phenylboronates. Chemistry – A European Journal 11:4010−18 doi: 10.1002/chem.200401335 |
[25] |
Wang S, Wang H, Yuan Z, Li M, Gao H, et al. 2022. Colorimetry combined with inner filter effect-based fluorometry: a versatile and robust strategy for multimode visualization of food dyes. ACS Applied Materials & Interfaces 14:57251−64 doi: 10.1021/acsami.2c17679 |
[26] |
Wang S, Zhang L, Jin Q, Xu Z, Zhao J, et al. 2022. Filter paper-based colorimetric analysis: an instrument-free strategy for semiquantitative naked-eye detection of food colorants. Food Chemistry 390:133087 doi: 10.1016/j.foodchem.2022.133087 |
[27] |
Wang S, Wang H, Ding Y, Li W, Gao H, et al. 2022. Filter paper- and smartphone-based point-of-care tests for rapid and reliable detection of artificial food colorants. Microchemical Journal 183:108088 doi: 10.1016/j.microc.2022.108088 |
[28] |
Chen G, Yuan Q, Saeeduddin M, Ou S, Zeng X, et al. 2016. Recent advances in tea polysaccharides: extraction, purification, physicochemical characterization and bioactivities. Carbohydrate Polymers 153:663−78 doi: 10.1016/j.carbpol.2016.08.022 |
[29] |
Sknepnek A, Tomić S, Miletić D, Lević S, Čolić M, et al. 2021. Fermentation characteristics of novel Coriolus versicolor and Lentinus edodes kombucha beverages and immunomodulatory potential of their polysaccharide extracts. Food Chemistry 342:128344 doi: 10.1016/j.foodchem.2020.128344 |
[30] |
Castillo JJ, Galermo AG, Amicucci MJ, Nandita E, Couture G, et al. 2021. A multidimensional mass spectrometry-based workflow for de novo structural elucidation of oligosaccharides from polysaccharides. Journal of the American Society for Mass Spectrometry 32:2175−85 doi: 10.1021/jasms.1c00133 |
[31] |
Chen L, Long R, Huang G, Huang H. 2020. Extraction and antioxidant activities in vivo of pumpkin polysaccharide. Industrial Crops & Products 146:112199 doi: 10.1016/j.indcrop.2020.112199 |
[32] |
Lv Y, Yang X, Zhao Y, Ruan Y, Yang Y, et al. 2009. Separation and quantification of component monosaccharides of the tea polysaccharides from Gynostemma pentaphyllum by HPLC with indirect UV detection. Food Chemistry 112:742−46 doi: 10.1016/j.foodchem.2008.06.042 |
[33] |
Wang B, Han L, Liu J, Zhang J, Wang W, et al. 2022. Lycium genus polysaccharide: an overview of its extraction, structures, pharmacological activities and biological applications. Separations 9:197 doi: 10.3390/separations9080197 |
[34] |
Wang L, Bao J, Wang L, Zhang F, Li Y. 2006. One-pot synthesis and bioapplication of amine-functionalized magnetite nanoparticles and hollow nanospheres. Chemistry – A European Journal 12:6341−47 doi: 10.1002/chem.200501334 |
[35] |
Yang Y, Zhao M, Liu Y, Fang Z, Li Q, et al. 2022. Separation and identification of an abundant trigalloylglucose from special tea genetic resources. Beverage Plant Research 2:11 doi: 10.48130/BPR-2022-0011 |
[36] |
Yan T, Tao Y, Wang X, Lv C, Miao G, et al. 2021. Preparation, characterization and evaluation of the antioxidant capacity and antitumor activity of myricetin microparticles formated by supercritical antisolvent technology. The Journal of Supercritical Fluids 175:105290 doi: 10.1016/j.supflu.2021.105290 |
[37] |
Yan T, Wang H, Song X, Yan T, Ding Y, et al. 2022. Fabrication of apigenin nanoparticles using antisolvent crystallization technology: a comparison of supercritical antisolvent, ultrasonic-assisted liquid antisolvent, and high-pressure homogenization technologies. International Journal of Pharmaceutics 624:121981 doi: 10.1016/j.ijpharm.2022.121981 |
[38] |
Zhao Z, Huangfu L, Dong L, Liu S. 2014. Functional groups and antioxidant activities of polysaccharides from five categories of tea. Industrial Crops and Products 58:31−35 doi: 10.1016/j.indcrop.2014.04.004 |
[39] |
Wang S, Ding Y, Wang H, Li W, Xu W, et al. 2022. Molecularly imprinted upconversion nanoparticles for active tumor targeting and microinvasive photothermal therapy. Journal of Materials Science 57:5177−97 doi: 10.1007/s10853-022-06965-8 |
[40] |
Zhou Y, Zhou X, Hong T, Qi W, Zhang K, et al. 2021. Lysosome-mediated mitochondrial apoptosis induced by tea polysaccharides promotes colon cancer cell death. Food & Function 12:10524−37 doi: 10.1039/d1fo00987g |
[41] |
Zhang X, Yu H, Cai Y, Ke M. 2017. Lycium barbarum polysaccharides inhibit proliferation and migration of bladder cancer cell lines BIU87 by suppressing Pi3K/AKT pathway. Oncotarget 8:5936−42 doi: 10.18632/oncotarget.13963 |
[42] |
Liu X, Liu F, Zhao S, Guo B, Ling P, et al. 2019. Purification of an acidic polysaccharide from Suaeda salsa plant and its anti-tumor activity by activating mitochondrial pathway in MCF-7 cells. Carbohydrate Polymers 215:99−107 doi: 10.1016/j.carbpol.2019.03.059 |
[43] |
Cheng L, Chen L, Yang Q, Wang Y, Wei X. 2018. Antitumor activity of Se-containing tea polysaccharides against sarcoma 180 and comparison with regular tea polysaccharides and Se-yeast. International Journal of Biological Macromolecules 120:853−58 doi: 10.1016/j.ijbiomac.2018.08.154 |