[1] |
Huang L, Yang S, Chen J, Tian J, Huang Q, et al. 2019. A facile surface modification strategy for fabrication of fluorescent silica nanoparticles with the aggregation-induced emission dye through surface-initiated cationic ring opening polymerization. Materials Science and Engineering: C 94:270−78 doi: 10.1016/j.msec.2018.09.042 |
[2] |
Chen Z, Han S, Zhou S, Feng H, Liu Y, et al. 2020. Review of health safety aspects of titanium dioxide nanoparticles in food application. NanoImpact 18:100224 doi: 10.1016/j.impact.2020.100224 |
[3] |
Kumari S, Yadav BS, Yadav RB. 2020. Synthesis and modification approaches for starch nanoparticles for their emerging food industrial applications: A review. Food Research International 128:108765 doi: 10.1016/j.foodres.2019.108765 |
[4] |
Adhikari BM, Tung VP, Truong T, Bansal N, Bhandari B. 2019. Water crystallisation of model sugar solutions with nanobubbles produced from dissolved carbon dioxide. Food Biophysics 14:403−14 doi: 10.1007/s11483-019-09590-2 |
[5] |
Ying Y, Ying W, Li Q, Meng D, Ren G, et al. 2017. Recent advances of nanomaterial-based membrane for water purification. Applied Materials Today 7:144−58 doi: 10.1016/j.apmt.2017.02.010 |
[6] |
Long Z, Liu M, Jiang R, Wan Q, Mao L, et al. 2017. Preparation of water soluble and biocompatible AIE-active fluorescent organic nanoparticles via multicomponent reaction and their biological imaging capability. Chemical Engineering Journal 308:527−34 doi: 10.1016/j.cej.2016.09.053 |
[7] |
Nirmalkar N, Pacek A, Barigou M. 2018. On the existence and stability of bulk nanobubbles. Langmuir 34:10964−73 doi: 10.1021/acs.langmuir.8b01163 |
[8] |
Wang Q, Zhao H, Qi N, Qin Y, Zhang X, et al. 2019. Generation and stability of size-adjustable bulk nanobubbles based on periodic pressure change. Scientific Reports 9:1118 doi: 10.1038/s41598-018-38066-5 |
[9] |
Ahmed AKA, Shi X, Hua L, Manzueta L, Qing W, et al. 2018. Influences of air, oxygen, nitrogen, and carbon dioxide nanobubbles on seed germination and plant growth. Journal of Agricultural and Food Chemistry 66:5117−24 doi: 10.1021/acs.jafc.8b00333 |
[10] |
Suzuki R, Oda Y, Omata D, Nishiie N, Koshima R, et al. 2016. Tumor growth suppression by the combination of nanobubbles and ultrasound. Cancer science 107:217−23 doi: 10.1111/cas.12867 |
[11] |
Lee JI, Yim BS, Kim JM. 2020. Effect of dissolved-gas concentration on bulk nanobubbles generation using ultrasonication. Scientific Reports 10:18816 doi: 10.1038/s41598-020-75818-8 |
[12] |
Ettoumi F, Zhang R, Belwal T, Javed M, Xu Y, et al. 2022. Generation and characterization of nanobubbles in ionic liquid for a green extraction of polyphenols from Carya cathayensis Sarg. Food Chemistry 369:130932 doi: 10.1016/j.foodchem.2021.130932 |
[13] |
Ebina K, Shi K, Hirao M, Hashimoto J, Kawato Y, et al. 2013. Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice. PLoS One 8:e65339 doi: 10.1371/journal.pone.0065339 |
[14] |
Oh SH, Yoon SH, Song H, Han JG, Kim JM. 2013. Effect of hydrogen nanobubble addition on combustion characteristics of gasoline engine. International Journal of Hydrogen Energy 38:14849−53 doi: 10.1016/j.ijhydene.2013.09.063 |
[15] |
Wang Y, Li X, Zhou Y, Huang P, Xu Y. 2010. Preparation of nanobubbles for ultrasound imaging and intracelluar drug delivery. International Journal of Pharmaceutics 384:148−53 doi: 10.1016/j.ijpharm.2009.09.027 |
[16] |
Javed M, Belwal T, Zhang R, Xu Y, Li L, et al. 2022. Optimization and mechanism of phytochemicals extraction from Camellia oleifera shells using novel biosurfactant nanobubbles solution coupled with ultrasonication. Food and Bioprocess Technology 15:1101−14 doi: 10.1007/s11947-022-02793-5 |
[17] |
Hayakumo S, Arakawa S, Takahashi M, Kondo K, Mano Y, et al. 2014. Effects of ozone nano-bubble water on periodontopathic bacteria and oral cells - in vitro studies. Science and Technology of Advanced Materials 15:055003 doi: 10.1088/1468-6996/15/5/055003 |
[18] |
Deotale SM, Dutta S, Moses JA, Anandharamakrishnan C. 2020. Stability of instant coffee foam by nanobubbles using spray-freeze drying technique. Food and Bioprocess Technology 13:1866−77 doi: 10.1007/s11947-020-02526-6 |
[19] |
Shiroodi S, Schwarz MH, Nitin N, Ovissipour R. 2021. Efficacy of nanobubbles alone or in combination with neutral electrolyzed water in removing Escherichia coli O157:H7, Vibrio parahaemolyticus, and Listeria innocua biofilms. Food and Bioprocess Technology 14:287−97 doi: 10.1007/s11947-020-02572-0 |
[20] |
Deotale S, Dutta S, Moses JA, Balasubramaniam VM, Anandharamakrishnan C. 2020. Foaming characteristics of beverages and its relevance to food processing. Food Engineering Reviews 12:229−50 doi: 10.1007/s12393-020-09213-4 |
[21] |
Demangeat JL. 2015. Gas nanobubbles and aqueous nanostructures: the crucial role of dynamization. Homeopathy 104:101−15 doi: 10.1016/j.homp.2015.02.001 |
[22] |
Zimmerman WB, Tesař V, Bandulasena HCH. 2011. Towards energy efficient nanobubble generation with fluidic oscillation. Current Opinion in Colloid & Interface Science 16:350−56 doi: 10.1016/j.cocis.2011.01.010 |
[23] |
Khaled Abdella Ahmed A, Sun C, Hua L, Zhang Z, Zhang Y, et al. 2018. Colloidal properties of air, oxygen, and nitrogen nanobubbles in water: Effects of ionic strength, natural organic matters, and surfactants. Environmental Engineering Science 35:720−27 doi: 10.1089/ees.2017.0377 |
[24] |
Wu C, Nesset K, Masliyah J, Xu Z. 2012. Generation and characterization of submicron size bubbles. Advances in Colloid and Interface Science 179−182:123−32 doi: 10.1016/j.cis.2012.06.012 |
[25] |
Snell JR, Zhou C, Carpenter JF, Randolph TW. 2016. Particle formation and aggregation of a therapeutic protein in nanobubble suspensions. Journal of Pharmaceutical Sciences 105:3057−63 doi: 10.1016/j.xphs.2016.06.020 |
[26] |
Ushikubo FY, Furukawa T, Nakagawa R, Enari M, Makino Y, et al. 2010. Evidence of the existence and the stability of nano-bubbles in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects 361:31−37 doi: 10.1016/j.colsurfa.2010.03.005 |
[27] |
Hu L, Xia Z. 2018. Application of ozone micro-nano-bubbles to groundwater remediation. Journal of Hazardous Materials 342:446−53 doi: 10.1016/j.jhazmat.2017.08.030 |
[28] |
Zhu J, An H, Alheshibri M, Liu L, Terpstra PMJ, et al. 2016. Cleaning with bulk nanobubbles. Langmuir 32:11203−11 doi: 10.1021/acs.langmuir.6b01004 |
[29] |
Gurung A, Dahl O, Jansson K. 2016. The fundamental phenomena of nanobubbles and their behavior in wastewater treatment technologies. Geosystem Engineering 19:133−42 doi: 10.1080/12269328.2016.1153987 |
[30] |
Parmar R, Majumder SK. 2013. Microbubble generation and microbubble-aided transport process intensification—A state-of-the-art report. Chemical Engineering and Processing: Process Intensification 64:79−97 doi: 10.1016/j.cep.2012.12.002 |
[31] |
Ushikubo FY, Enari M, Furukawa T, Nakagawa R, Makino Y, et al. 2010. Zeta-potential of micro- and/or nano-bubbles in water produced by some kinds of gases. IFAC Proceedings Volumes 43:283−88 doi: 10.3182/20101206-3-jp-3009.00050 |
[32] |
Elmahdy AM, Mirnezami M, Finch JA. 2008. Zeta potential of air bubbles in presence of frothers. International Journal of Mineral Processing 89:40−43 doi: 10.1016/j.minpro.2008.09.003 |
[33] |
Ghadimkhani A, Zhang W, Marhaba T. 2016. Ceramic membrane defouling (cleaning) by air Nano Bubbles. Chemosphere 146:379−84 doi: 10.1016/j.chemosphere.2015.12.023 |
[34] |
Liu S, Oshita S, Makino Y, Wang Q, Kawagoe Y, et al. 2016. Oxidative capacity of nanobubbles and its effect on seed germination. ACS Sustainable Chemistry & Engineering 4:1347−53 doi: 10.1021/acssuschemeng.5b01368 |
[35] |
Chu LB, Yan ST, Xing XH, Yu AF, Sun XL, et al. 2008. Enhanced sludge solubilization by microbubble ozonation. Chemosphere 72:205−12 doi: 10.1016/j.chemosphere.2008.01.054 |
[36] |
Takahashi M, Ishikawa H, Asano T, Horibe H. 2012. Effect of microbubbles on ozonized water for photoresist removal. The Journal of Physical Chemistry C 116:12578−83 doi: 10.1021/jp301746g |
[37] |
Thi Phan KK, Truong T, Wang Y, Bhandari B. 2020. Nanobubbles: Fundamental characteristics and applications in food processing. Trends in Food Science & Technology 95:118−30 doi: 10.1016/j.jpgs.2019.11.019 |
[38] |
Ahmed AKA, Sun C, Hua L, Zhang Z, Zhang Y, et al. 2018. Generation of nanobubbles by ceramic membrane filters: The dependence of bubble size and zeta potential on surface coating, pore size and injected gas pressure. Chemosphere 203:327−35 doi: 10.1016/j.chemosphere.2018.03.157 |
[39] |
Lohse D, Zhang X. 2015. Surface nanobubbles and nanodroplets. Reviews of Modern Physics 87:981 doi: 10.1103/RevModPhys.87.981 |
[40] |
Agarwal A, Ng WJ, Liu Y. 2011. Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere 84:1175−80 doi: 10.1016/j.chemosphere.2011.05.054 |
[41] |
Ahmadi R, Khodadadi Darban A. 2013. Modeling and optimization of nano-bubble generation process using response surface methodology. International Journal of Nanoscience and Nanotechnology 9(3):151−62 |
[42] |
Etchepare R, Oliveira H, Nicknig M, Azevedo A, Rubio J. 2017. Nanobubbles: Generation using a multiphase pump, properties and features in flotation. Minerals Engineering 112:19−26 doi: 10.1016/j.mineng.2017.06.020 |
[43] |
Ahmadi R, Khodadadi DA, Abdollahy M, Fan M. 2014. Nano-microbubble flotation of fine and ultrafine chalcopyrite particles. International Journal of Mining Science and Technology 24:559−66 doi: 10.1016/j.ijmst.2014.05.021 |
[44] |
Xun A, Truong T, Bhandari B. 2017. Effect of carbonation of supersaturated lactose solution on crystallisation behaviour of alpha-lactose monohydrate. Food Biophysics 12:52−59 doi: 10.1007/s11483-016-9462-3 |
[45] |
Xu B-g, Zhang M, Bhandari B, Sun J, Gao Z. 2016. Infusion of CO2 in a solid food: A novel method to enhance the low-frequency ultrasound effect on immersion freezing process. Innovative Food Science & Emerging Technologies 35:194−203 doi: 10.1016/j.ifset.2016.04.011 |
[46] |
Kikuchi K, Ioka A, Oku T, Tanaka Y, Saihara Y, et al. 2009. Concentration determination of oxygen nanobubbles in electrolyzed water. Journal of Colloid and Interface Science 329:306−9 doi: 10.1016/j.jcis.2008.10.009 |
[47] |
Tarábková H, Janda P. 2020. Nanobubble-assisted nanopatterning reveals the existence of liquid quasi-two-dimensional foams pinned to a water-immersed surface. Langmuir 36:7200−9 doi: 10.1021/acs.langmuir.0c00331 |
[48] |
Walczyk W, Schönherr H. 2014. Characterization of the interaction between AFM tips and surface nanobubbles. Langmuir 30:7112−26 doi: 10.1021/la501484p |
[49] |
Kim T, Kim Y, Han M. 2012. Development of novel oil washing process using bubble potential energy. Marine Pollution Bulletin 64:2325−32 doi: 10.1016/j.marpolbul.2012.08.031 |
[50] |
Bui TT, Han M. 2015. Removal of Phormidium sp. by positively charged bubble flotation. Minerals Engineering 72:108−14 doi: 10.1016/j.mineng.2014.12.008 |
[51] |
Temesgen T, Bui TT, Han M, Kim T, Park H. 2017. Micro and nanobubble technologies as a new horizon for water-treatment techniques: A review. Advances in Colloid and Interface Science 246:40−51 doi: 10.1016/j.cis.2017.06.011 |
[52] |
Rosa AF, Rubio J. 2018. On the role of nanobubbles in particle–bubble adhesion for the flotation of quartz and apatitic minerals. Minerals Engineering 127:178−84 doi: 10.1016/j.mineng.2018.08.020 |
[53] |
Rooze J, Rebrov EV, Schouten JC, Keurentjes JT. 2013. Dissolved gas and ultrasonic cavitation – a review. Ultrasonics sonochemistry 20:1−11 doi: 10.1016/j.ultsonch.2012.04.013 |
[54] |
Sovechles JM, Waters KE. 2015. Effect of ionic strength on bubble coalescence in inorganic salt and seawater solutions. AIChE Journal 61:2489−96 doi: 10.1002/aic.14851 |
[55] |
Uchida T, Liu S, Enari M, Oshita S, Yamazaki K, Gohara K. 2016. Effect of NaCl on the lifetime of micro-and nanobubbles. Nanomaterials 6:31 doi: 10.3390/nano6020031 |
[56] |
Li C, Zhou X, Zhu W, Chen S, Wang D, et al. 2020. Enhanced extraction of flavonoids from grapefruit (Citrus paradisi) peel using nanobubbles: Optimization, kinetics and thermodynamics. Ultrasonics Sonochemistry 63:104936 |
[57] |
Marcelino KR, Ling L, Wongkiew S, Nhan HT, Surendra K, et al. 2023. Nanobubble technology applications in environmental and agricultural systems: Opportunities and challenges. Critical Reviews in Environmental Science and Technology 53:1378−403 doi: 10.1080/10643389.2022.2136931 |
[58] |
Javed M, Belwal T, Huang H, Xu Y, Ettoumi Fe, et al. 2022. Generation and stabilization of CO2 nanobubbles using surfactants for extraction of polyphenols from Camellia oleifera shells. Journal of Food Science 87:4027−39 doi: 10.1111/1750-3841.16272 |
[59] |
Xu B, Zhang M, Bhandari B, Cheng X, Sun J. 2015. Effect of ultrasound immersion freezing on the quality attributes and water distributions of wrapped red radish. Food and Bioprocess Technology 8:1366−76 doi: 10.1007/s11947-015-1496-x |
[60] |
Tian Y, Zhang Z, Zhu Z, Sun DW. 2021. Effects of nano-bubbles and constant/variable-frequency ultrasound-assisted freezing on freezing behaviour of viscous food model systems. Journal of Food Engineering 292:110284 doi: 10.1016/j.jfoodeng.2020.110284 |
[61] |
Zhu Z, Sun DW, Zhang Z, Li Y, Cheng L. 2018. Effects of micro-nano bubbles on the nucleation and crystal growth of sucrose and maltodextrin solutions during ultrasound-assisted freezing process. LWT 92:404−11 doi: 10.1016/j.lwt.2018.02.053 |
[62] |
Adhikari BM, Tung VP, Truong T, Bansal N, Bhandari B. 2020. Impact of in-situ CO2 nano-bubbles generation on freezing parameters of selected liquid foods. Food Biophysics 15:97−112 doi: 10.1007/s11483-019-09604-z |
[63] |
James C, Purnell G, James SJ. 2015. A review of novel and innovative food freezing technologies. Food and Bioprocess Technology 8:1616−34 doi: 10.1007/s11947-015-1542-8 |
[64] |
Delgado AE, Zheng L, Sun DW. 2009. Influence of ultrasound on freezing rate of immersion-frozen apples. Food and Bioprocess Technology 2:263−70 doi: 10.1007/s11947-008-0111-9 |
[65] |
Hu F, Sun DW, Gao W, Zhang Z, Zeng X, et al. 2013. Effects of pre-existing bubbles on ice nucleation and crystallization during ultrasound-assisted freezing of water and sucrose solution. Innovative Food Science & Emerging Technologies 20:161−66 doi: 10.1016/j.ifset.2013.08.002 |
[66] |
Adhikari BM, Truong T, Bansal N, Bhandari B. 2018. Influence of gas addition on crystallisation behaviour of lactose from supersaturated solution. Food and Bioproducts Processing 109:86−97 doi: 10.1016/j.fbp.2018.03.003 |
[67] |
Truong T, Palmer M, Bansal N, Bhandari B, ARC Dairy Innovation Hub. 2018. Effects of dissolved carbon dioxide in fat phase of cream on manufacturing and physical properties of butter. Journal of Food Engineering 226:9−21 doi: 10.1016/j.jfoodeng.2018.01.012 |
[68] |
Khalesi M, Gebruers K, Derdelinckx G. 2015. Recent advances in fungal hydrophobin towards using in industry. The Protein Journal 34:243−55 doi: 10.1007/s10930-015-9621-2 |
[69] |
Chen G, Jiao H, Chen Y, Zhang Z. 2021. Incorporation of antibacterial zein/thymol nanoparticles dispersed using nanobubble technology improves the functional performance of gelatin films. Food Hydrocolloids 121:107051 doi: 10.1016/j.foodhyd.2021.107051 |
[70] |
Saint-Eve A, Déléris I, Feron G, Ibarra D, Guichard E, et al. 2010. How trigeminal, taste and aroma perceptions are affected in mint-flavored carbonated beverages. Food Quality and Preference 21:1026−33 doi: 10.1016/j.foodqual.2010.05.021 |
[71] |
Phan KKT, Truong T, Wang Y, Bhandari B. 2021. Formation and stability of carbon dioxide nanobubbles for potential applications in food processing. Food Engineering Reviews 13:3−14 doi: 10.1007/s12393-020-09233-0 |
[72] |
Yan T, Hua Z, Deng Y, Guo H, Xu W, et al. 2022. Air nanobubbles induced reversible self-assembly of 7S globulins isolated from pea (Pisum sativum L.). Food Hydrocolloids 133:107847 doi: 10.1016/j.foodhyd.2022.107847 |
[73] |
Qiu C, Hu Y, Jin Z, McClements DJ, Qin Y, et al. 2019. A review of green techniques for the synthesis of size-controlled starch-based nanoparticles and their applications as nanodelivery systems. Trends in Food Science & Technology 92:138−51 doi: 10.1016/j.jpgs.2019.08.007 |
[74] |
Xiao Y, Jiang SC, Wang X, Muhammad T, Song P, et al. 2020. Mitigation of biofouling in agricultural water distribution systems with nanobubbles. Environment International 141:105787 doi: 10.1016/j.envint.2020.105787 |
[75] |
Khuntia S, Majumder SK, Ghosh P. 2015. Quantitative prediction of generation of hydroxyl radicals from ozone microbubbles. Chemical Engineering Research and Design 98:231−39 doi: 10.1016/j.cherd.2015.04.003 |
[76] |
Zhang F, Xi J, Huang JJ, Hu HY. 2013. Effect of inlet ozone concentration on the performance of a micro-bubble ozonation system for inactivation of Bacillus subtilis spores. Separation and Purification Technology 114:126−33 doi: 10.1016/j.seppur.2013.04.034 |
[77] |
Zhou Y, Zhou B, Xu F, Muhammad T, Li Y. 2019. Appropriate dissolved oxygen concentration and application stage of micro-nano bubble water oxygation in greenhouse crop plantation. Agricultural Water Management 223:105713 doi: 10.1016/j.agwat.2019.105713 |
[78] |
Zhou Y, Li Y, Liu X, Wang K, Muhammad T. 2019. Synergistic improvement in spring maize yield and quality with micro/nanobubbles water oxygation. Scientific Reports 9:5226 doi: 10.1038/s41598-019-41617-z |
[79] |
Zhou Y, Bastida F, Zhou B, Sun Y, Gu T, et al. 2020. Soil fertility and crop production are fostered by micro-nano bubble irrigation with associated changes in soil bacterial community. Soil Biology and Biochemistry 141:107663 doi: 10.1016/j.soilbio.2019.107663 |
[80] |
Liu S, Oshita S, Kawabata S, Thuyet DQ. 2017. Nanobubble water's promotion effect of barley (Hordeum vulgare L.) sprouts supported by RNA-Seq analysis. Langmuir 33:12478−86 doi: 10.1021/acs.langmuir.7b02290 |
[81] |
Ushida A, Koyama T, Nakamoto Y, Narumi T, Sato T, et al. 2017. Antimicrobial effectiveness of ultra-fine ozone-rich bubble mixtures for fresh vegetables using an alternating flow. Journal of Food Engineering 206:48−56 doi: 10.1016/j.jfoodeng.2017.03.003 |
[82] |
Phan K, Truong T, Wang Y, Bhandari B. 2021. Effect of CO2 nanobubbles incorporation on the viscosity reduction of fruit juice concentrate and vegetable oil. International Journal of Food Science & Technology 56:4278−86 doi: 10.1111/ijfs.15240 |
[83] |
Adhikari BM, Truong T, Prakash S, Bansal N, Bhandari B. 2020. Impact of incorporation of CO2 on the melting, texture and sensory attributes of soft-serve ice cream. International Dairy Journal 109:104789 doi: 10.1016/j.idairyj.2020.104789 |
[84] |
Amamcharla J, Li B, Liu Z. 2021. Use of micro-and nano-bubbles in liquid processing. Google Patents |
[85] |
Zhang BH, Xu X, Lu H, Wang L, Yang Q. 2021. Removal of phoxim, chlorothalonil and Cr3+ from vegetable using bubble flow. Journal of Food Engineering 291:110217 doi: 10.1016/j.jfoodeng.2020.110217 |
[86] |
Ogawa Y, Iwanaga M, Aoki T. 2012. Liquid seasoning, beverages, method of seasoning food, and seasoned food. Google Patents |
[87] |
Barker GS, Jefferson B, Judd SJ. 2002. The control of bubble size in carbonated beverages. Chemical Engineering Science 57:565−73 doi: 10.1016/S0009-2509(01)00391-8 |
[88] |
Zúñiga RN, Aguilera JM. 2009. Structure–fracture relationships in gas-filled gelatin gels. Food hydrocolloids 23:1351−57 doi: 10.1016/j.foodhyd.2008.11.012 |
[89] |
Zhang ZH, Wang S, Cheng L, Ma H, Gao X, et al. 2022. Micro-nano-bubble technology and its applications in food industry: A critical review. Food Reviews International 0:1−23 doi: 10.1080/87559129.2021.2023172 |
[90] |
Babu KS, Amamcharla JK. 2022. Generation methods, stability, detection techniques, and applications of bulk nanobubbles in agro-food industries: a review and future perspective. Critical Reviews in Food Science and Nutrition 00:1−20 doi: 10.1080/10408398.2022.2067119 |
[91] |
Zhang X, Erkan N, Okamoto K, Liang H. 2019. Effects of ultrafine bubbles on the aerosols removal efficiency due to pool scrubbing. The 27th International Conference on Nuclear Engineering (ICONE27), May 19−24, 2019. Japan: The Japan Society of Mechanical Engineers https://doi.org/10.1299/jsmeicone.2019.27.2022 |
[92] |
Yoshirou O, Mitsuhiko I, Toshiko A. 2012. Liquid seasoning, beverages, method of seasoning food, and seasoned dood. Japan |