[1] |
Tian Y, Xu C, Hong H, Zhou Q, Wang D. 2019. Mapping earthquake-triggered landslide susceptibility by use of artificial neural network (ANN) models: an example of the 2013 Minxian (China) Mw 5.9 event. Geomatics, Natural Hazards and Risk 10(1):1−25 doi: 10.1080/19475705.2018.1487471 |
[2] |
Luo L, Pei X, Zhong C, Yang Q, Fan X, et al. 2022. Multi-Temporal Landslide Inventory-Based Statistical Susceptibility Modeling Associated With the 2017 Mw 6.5 Jiuzhaigou Earthquake, Sichuan, China. Frontiers in Environmental Science 10:858635 doi: 10.3389/fenvs.2022.858635 |
[3] |
Chen S, Wu L, Miao Z. 2023. Regional seismic landslide susceptibility assessment considering the rock mass strength heterogeneity. Geomatics, Natural Hazards and Risk 14(1):1−27 doi: 10.1080/19475705.2022.2152392 |
[4] |
Pareek N, Sharma ML, Arora MK. 2010. Impact of seismic factors on landslide susceptibility zonation: a case study in part of Indian Himalayas. Landslides 7:191−201 doi: 10.1007/s10346-009-0192-1 |
[5] |
Guo X, Fu B, Du J, Shi P, Chen Q, et al. 2021. Applicability of Susceptibility Model for Rock and Loess Earthquake Landslides in the Eastern Tibetan Plateau. Remote Sensing 13(13):2546 doi: 10.3390/rs13132546 |
[6] |
Xu C, Xu X, Dai F, Wu Z, He HL, et al. 2013. Application of an incomplete landslide inventory, logistic regression model and its validation for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China. Natural Hazards 68:883−900 doi: 10.1007/s11069-013-0661-7 |
[7] |
Guo X, Fu B, Du J, Shi P, Li J, et al. 2021. Monitoring and Assessment for the Susceptibility of Landslide Changes After the 2017 Ms 7.0 Jiuzhaigou Earthquake Using the Remote Sensing Technology. Frontiers in Earth Science 9:633117 doi: 10.3389/feart.2021.633117 |
[8] |
Rapolla A, Di Nocera S, Matano F, Paoletti V, Tarallo D. 2012. Susceptibility regional zonation of earthquake-induced landslides in Campania, Southern Italy. Natural Hazards 61:115−26 doi: 10.1007/s11069-011-9790-z |
[9] |
Saade A, Abou-Jaoude G, Wartman J. 2016. Regional-scale co-seismic landslide assessment using limit equilibrium analysis. Engineering Geology 204:53−64 doi: 10.1016/j.enggeo.2016.02.004 |
[10] |
Jibson RW. 2007. Regression models for estimating coseismic landslide displacement. Engineering Geology 91(2−4):209−18 doi: 10.1016/j.enggeo.2007.01.013 |
[11] |
Jibson RW. Harp EL, Michael JA. 2000. A method for producing digital probabilistic seismic landslide hazard maps. Engineering Geology 58(3−4):271−89 doi: 10.1016/S0013-7952(00)00039-9 |
[12] |
Romeo R. 2000. Seismically induced landslide displacements: a predictive model. Engineering Geology 58(3−4):337−51 doi: 10.1016/S0013-7952(00)00042-9 |
[13] |
Gigović L, Drobnjak S, Pamučar D. 2019. The application of the hybrid GIS spatial multi-criteria decision analysis best–worst methodology for landslide susceptibility mapping. International Journal of Geo-Information 8(2):79 doi: 10.3390/ijgi8020079 |
[14] |
Xu C, Xu X, Dai F, Xiao J, Tan X, et al. 2012. Landslide Hazard Mapping Using GIS and Weight of Evidence Model in Qingshui River Watershed of 2008 Wenchuan Earthquake Struck Region. Journal of Earth Science 23:97−120 doi: 10.1007/s12583-012-0236-7 |
[15] |
Huang Y, Zhao L. 2018. Review on landslide susceptibility mapping using support vector machines. CATENA 165:520−29 doi: 10.1016/j.catena.2018.03.003 |
[16] |
Wang Y, Seijmonsbergen AC, Bouten W, Chen Q. 2015. Using statistical learning algorithms in regional landslide susceptibility zonation with limited landslide field data. Journal of Mountain Science 12(2):268−88 doi: 10.1007/s11629-014-3134-x |
[17] |
Xiao T, Yin K, Yao T, Liu S. 2019. Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning models in Wanzhou County, Three Gorges Reservoir, China. Acta Geochimica 38:654−69 doi: 10.1007/s11631-019-00341-1 |
[18] |
Chen W, Peng J, Hong H, Shahabi H, Pradhan B, et al. 2018. Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. Science of The Total Environment 626:1121−35 doi: 10.1016/j.scitotenv.2018.01.124 |
[19] |
Xu C, Dai F, Xu X, Lee YH. 2012. GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China. Geomorphology 145–146:70−80 doi: 10.1016/j.geomorph.2011.12.040 |
[20] |
Yao X, Tham LG, Dai F. 2008. Landslide susceptibility mapping based on Support Vector Machine: A case study on natural slopes of Hong Kong, China. Geomorphology 101(4):572−82 doi: 10.1016/j.geomorph.2008.02.011 |
[21] |
Ma S, Xu C. 2019. Assessment of co-seismic landslide hazard using the Newmark model and statistical analyses: a case study of the 2013 Lushan, China, Mw6.6 earthquake. Natural Hazards 96:389−412 doi: 10.1007/s11069-018-3548-9 |
[22] |
Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F. 2018. A review of statistically-based landslide susceptibility models. Earth-Science Reviews 180:60−91 doi: 10.1016/j.earscirev.2018.03.001 |
[23] |
Schmitt RG, Tanyas H, Nowicki Jessee MA, Zhu J, Biegel KM, et al. 2017. An open repository of earthquake-triggered ground-failure inventories. Report. Data Series 1064. U.S. Geological Survey, Reston, VA. 17 pp. https://doi.org/10.3133/ds1064 |
[24] |
Fan X, Scaringi G, Korup O, West AJ, van Westen CJ, et al. 2019. Earthquake-Induced Chains of Geologic Hazards: Patterns, Mechanisms, and Impacts. Reviews of Geophysics 57(2):421−503 doi: 10.1029/2018RG000626 |
[25] |
Perry GLW, Dickson ME. 2018. Using Machine Learning to Predict Geomorphic Disturbance: The Effects of Sample Size, Sample Prevalence, and Sampling Strategy. Journal of Geophysical Research-Earth Surface 123(11):2954−2970 doi: 10.1029/2018JF004640 |
[26] |
Du G, Zhang Y, Zou L, Yang Z, Yuan Y, et al. 2022. Co-seismic landslide hazard assessment of the 2017 Ms6.9 Milin earthquake, Tibet, China, combining the logistic regression–information value and Newmark displacement models. Bulletin of Engineering Geology and the Environment 81:446 doi: 10.1007/s10064-022-02901-x |
[27] |
Xu C, Xu X, Yu G. 2013. Landslides triggered by slipping-fault-generated earthquake on a plateau: an example of the 14 April 2010, Ms7.1, Yushu, China earthquake. Landslides 10:421−31 doi: 10.1007/s10346-012-0340-x |
[28] |
Xu C, Xu X, Shyu JBH, Gao M, Tan X, et al. 2015. Landslides triggered by the 20 April 2013 Lushan, China, Mw 6.6 earthquake from field investigations and preliminary analyses. Landslides 12:365−85 doi: 10.1007/s10346-014-0546-1 |
[29] |
Yang Z, Pang B, Dong W, Li D. 2023. Spatial Pattern and Intensity Mapping of Coseismic Landslides Triggered by the 2022 Luding Earthquake in China. Geomatics, Natural Hazards and Risk 15(5):1323 doi: 10.3390/rs15051323 |
[30] |
Chen W, Xie XS, Wang JL, Pradhan B, Hong HY, et al. 2017. A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. CATENA 151:147−60 doi: 10.1016/j.catena.2016.11.032 |
[31] |
Du GL, Zhang YS, Yang ZH, Guo CB, Yao X, et al. 2019. Landslide susceptibility mapping in the region of eastern Himalayan syntaxis, Tibetan Plateau, China: a comparison between analytical hierarchy process information value and logistic regression-information value methods. Bulletin of Engineering Geology and the Environment 78:4201−15 doi: 10.1007/s10064-018-1393-4 |
[32] |
Fan X, Scaringi G, Xu Q, Zhan W, Dai L, et al. 2018. Coseismic landslides triggered by the 8th August 2017 Ms 7.0 Jiuzhaigou earthquake (Sichuan, China): factors controlling their spatial distribution and implications for the seismogenic blind fault identification. Landslides 15:967−83 doi: 10.1007/s10346-018-0960-x |
[33] |
Zhou H, Che A, Shuai X, Zhang Y. 2023. A spatial evaluation method for earthquake disaster using optimized BP neural network model. Geomatics, Natural Hazards and Risk 14(1):1−26 doi: 10.1080/19475705.2022.2160664 |
[34] |
Abu El-Magd SA, Ali SA, Pham QB. 2021. Spatial modeling and susceptibility zonation of landslides using random forest, naïve bayes and K-nearest neighbor in a complicated terrain. Earth Science Informatics 14:1227−43 doi: 10.1007/s12145-021-00653-y |