[1]

Dioses-Salinas DC, Pizarro-Ortega CI, De-la-Torre GE. 2020. A methodological approach of the current literature on microplastic contamination in terrestrial environments: current knowledge and baseline considerations. Science of The Total Environment 730:139164

doi: 10.1016/j.scitotenv.2020.139164
[2]

Jusko TA, Oktapodas M, Palkovičová Murinová Lu, Babinská K, Babjaková J, et al. 2016. Demographic, reproductive, and dietary determinants of perfluorooctane sulfonic (PFOS) and perfluorooctanoic acid (PFOA) concentrations in human colostrum. Environmental science & technology 50:7152−62

doi: 10.1021/acs.est.6b00195
[3]

Kim YN, Yoon JH, Kim KHJ. 2021. Microplastic contamination in soil environment – a review. Soil Science Annual 71:300−8

doi: 10.37501/soilsa/131646
[4]

Guo J, Huang X, Xiang L, Wang Y, Li Y, et al. 2020. Source, migration and toxicology of microplastics in soil. Environment International 137:105263

doi: 10.1016/j.envint.2019.105263
[5]

Huang W, Song B, Liang J, Niu Q, Zeng G, et al. 2021. Microplastics and associated contaminants in the aquatic environment: a review on their ecotoxicological effects, trophic transfer, and potential impacts to human health. Journal of Hazardous Materials 405:124187

doi: 10.1016/j.jhazmat.2020.124187
[6]

Choong WS, Hadibarata T, Tang DKH. 2021. Abundance and distribution of microplastics in the water and riverbank sediment in Malaysia – a review. Biointerface Research in Applied Chemistry 11:11700−12

doi: 10.33263/briac114.1170011712
[7]

Horton AA, Walton A, Spurgeon DJ, Lahive E, Svendsen C. 2017. Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of The Total Environment 586:127−41

doi: 10.1016/j.scitotenv.2017.01.190
[8]

Burn S, Hoang M, Zarzo D, Olewniak F, Campos E, et al. 2015. Desalination techniques — a review of the opportunities for desalination in agriculture. Desalination 364:2−16

doi: 10.1016/j.desal.2015.01.041
[9]

Lusher A, Hollman P, Mendoza-Hill J. 2017. Microplastics in fisheries and aquaculture. Status of knowledge on their occurrence and implications for aquatic organisms and food safety. FAOfisheries and aquaculture technical paper 615. Rome: Food and Agriculture Organisation of the United Nations. 147 pp. https://www.fao.org/3/i7677e/i7677e.pdf

[10]

Chen Y, Leng Y, Liu X, Wang J. 2020. Microplastic pollution in vegetable farmlands of suburb Wuhan, central China. Environmental Pollution 257:113449

doi: 10.1016/j.envpol.2019.113449
[11]

Maity S, Guchhait R, Sarkar MB, Pramanick K. 2022. Occurrence and distribution of micro/nanoplastics in soils and their phytotoxic effects: a review. Plant, Cell & Environment 45:1011−28

doi: 10.1111/pce.14248
[12]

Dantas DV, Ribeiro CIR, de C. A. Frischknecht C, Machado R, Farias EGG. 2019. Ingestion of plastic fragments by the Guri sea catfish Genidens genidens (Cuvier, 1829) in a subtropical coastal estuarine system. Environmental Science and Pollution Research 26:8344−51

doi: 10.1007/s11356-019-04244-9
[13]

de Sá LC, Oliveira M, Ribeiro F, Rocha TL, Futter MN. 2018. Studies of the effects of microplastics on aquatic organisms: what do we know and where should we focus our efforts in the future? Science of the total environment 645:1029−39

doi: 10.1016/j.scitotenv.2018.07.207
[14]

Galloway TS, Cole M, Lewis C. 2017. Interactions of microplastic debris throughout the marine ecosystem. Nature Ecology & Evolution 1:0116

doi: 10.1038/s41559-017-0116
[15]

Guzzetti E, Sureda A, Tejada S, Faggio C. 2018. Microplastic in marine organism: environmental and toxicological effects. Environmental Toxicology and Pharmacology 64:164−71

doi: 10.1016/j.etap.2018.10.009
[16]

Beieler RW. 2013. Pipelines for water conveyance and drainage. Reston, VA: American Society of Civil Engineers. 108 pp. https://ascelibrary.org/doi/book/10.1061/9780784412749

[17]

Katsumi N, Kusube T, Nagao S, Okochi H. 2021. Accumulation of microcapsules derived from coated fertilizer in paddy fields. Chemosphere 267:129185

doi: 10.1016/j.chemosphere.2020.129185
[18]

Lwanga EH, Beriot N, Corradini F, Silva V, Yang X, et al. 2022. Review of microplastic sources, transport pathways and correlations with other soil stressors: a journey from agricultural sites into the environment. Chemical and Biological Technologies in Agriculture 9:20

doi: 10.1186/s40538-021-00278-9
[19]

Rillig MC. 2012. Microplastic in terrestrial ecosystems and the soil? Environmental Science & Technology 46:6453−54

doi: 10.1021/es302011r
[20]

Rillig MC, de Souza Machado AA, Lehmann A, Klümper U. 2018. Evolutionary implications of microplastics for soil biota. Environmental Chemistry 16:3−7

doi: 10.1071/EN18118
[21]

Zhou B, Wang J, Zhang H, Shi H, Fei Y, et al. 2020. Microplastics in agricultural soils on the coastal plain of Hangzhou Bay, east China: multiple sources other than plastic mulching film. Journal of Hazardous Materials 388:121814

doi: 10.1016/j.jhazmat.2019.121814
[22]

Corradini F, Meza P, Eguiluz R, Casado F, Huerta-Lwanga E, et al. 2019. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Science of The Total Environment 671:411−20

doi: 10.1016/j.scitotenv.2019.03.368
[23]

Zhang S, Han B, Sun Y, Wang F. 2020. Microplastics influence the adsorption and desorption characteristics of Cd in an agricultural soil. Journal of Hazardous Materials 388:121775

doi: 10.1016/j.jhazmat.2019.121775
[24]

Yang T, Luo J, Nowack B. 2021. Characterization of nanoplastics, fibrils, and microplastics released during washing and abrasion of polyester textiles. Environmental Science & Technology 55:15873−81

doi: 10.1021/acs.est.1c04826
[25]

Yang J, Li R, Zhou Q, Li L, Li Y, et al. 2021. Abundance and morphology of microplastics in an agricultural soil following long-term repeated application of pig manure. Environmental Pollution 272:116028

doi: 10.1016/j.envpol.2020.116028
[26]

van den Berg P, Huerta-Lwanga E, Corradini F, Geissen V. 2020. Sewage sludge application as a vehicle for microplastics in eastern Spanish agricultural soils. Environmental Pollution 261:114198

doi: 10.1016/j.envpol.2020.114198
[27]

Zhang L, Xie Y, Liu J, Zhong S, Qian Y, et al. 2020. An overlooked entry pathway of microplastics into agricultural soils from application of sludge-based fertilizers. Environmental Science & Technology 54:4248−55

doi: 10.1021/acs.est.9b07905
[28]

Crossman J, Hurley RR, Futter M, Nizzetto L. 2020. Transfer and transport of microplastics from biosolids to agricultural soils and the wider environment. Science of The Total Environment 724:138334

doi: 10.1016/j.scitotenv.2020.138334
[29]

Shruti V, Kutralam-Muniasamy G. 2019. Bioplastics: missing link in the era of Microplastics. Science of the Total Environment 697:134139

doi: 10.1016/j.scitotenv.2019.134139
[30]

Mani T, Hauk A, Walter U, Burkhardt-Holm P. 2016. Microplastics profile along the Rhine River. Scientific Reports 5:17988

doi: 10.1038/srep17988
[31]

Zhang K, Gong W, Lv J, Xiong X, Wu C. 2015. Accumulation of floating microplastics behind the Three Gorges Dam. Environmental Pollution 204:117−23

doi: 10.1016/j.envpol.2015.04.023
[32]

Leslie HA, Brandsma SH, van Velzen MJM, Vethaak AD. 2017. Microplastics en route: field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota. Environment International 101:133−42

doi: 10.1016/j.envint.2017.01.018
[33]

Silva GC, Galleguillos Madrid FM, Hernández D, Pincheira G, Peralta AK, et al. 2021. Microplastics and their effect in horticultural crops: food safety and plant stress. Agronomy 11:1528

doi: 10.3390/agronomy11081528
[34]

Free CM, Jensen OP, Mason SA, Eriksen M, Williamson NJ, et al. 2014. High-levels of microplastic pollution in a large, remote, mountain lake. Marine Pollution Bulletin 85:156−63

doi: 10.1016/j.marpolbul.2014.06.001
[35]

Su L, Xue Y, Li L, Yang D, Kolandhasamy P, et al. 2016. Microplastics in Taihu Lake, China. Environmental Pollution 216:711−19

doi: 10.1016/j.envpol.2016.06.036
[36]

Enfrin M, Lee J, Le-Clech P, Dumée LF. 2020. Kinetic and mechanistic aspects of ultrafiltration membrane fouling by nano-and microplastics. Journal of Membrane Science 601:117890

doi: 10.1016/j.memsci.2020.117890
[37]

Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M. 2012. Microplastics in the marine environment: a review of the methods used for identification and quantification. Environmental Science & Technology 46:3060−75

doi: 10.1021/es2031505
[38]

Hanvey JS, Lewis PJ, Lavers JL, Crosbie ND, Pozo K, et al. 2017. A review of analytical techniques for quantifying microplastics in sediments. Analytical Methods 9:1369−83

doi: 10.1039/C6AY02707E
[39]

Sarau G, Kling L, Oßmann BE, Unger AK, Vogler F, Christiansen SH. 2020. Correlative microscopy and spectroscopy workflow for microplastics. Applied Spectroscopy 74:1155−60

doi: 10.1177/0003702820916250
[40]

Wang Z, Wagner J, Ghosal S, Bedi G, Wall S. 2017. SEM/EDS and optical microscopy analyses of microplastics in ocean trawl and fish guts. Science of The Total Environment 603-604:616−26

doi: 10.1016/j.scitotenv.2017.06.047
[41]

Sun W, Jin C, Bai Y, Ma R, Deng Y, et al. 2022. Blood uptake and urine excretion of nano- and micro-plastics after a single exposure. Science of The Total Environment 848:157639

doi: 10.1016/j.scitotenv.2022.157639
[42]

Lin J, Xu X, Yue B, Li Y, Zhou Q, et al. 2021. A novel thermoanalytical method for quantifying microplastics in marine sediments. Science of The Total Environment 760:144316

doi: 10.1016/j.scitotenv.2020.144316
[43]

Ly NH, Kim MK, Lee H, Lee C, Son SJ, et al. 2022. Advanced microplastic monitoring using Raman spectroscopy with a combination of nanostructure-based substrates. Journal of Nanostructure in Chemistry 12:865−88

doi: 10.1007/s40097-022-00506-0
[44]

Sarfo DK, Izake EL, O'Mullane AP, Ayoko GA. 2019. Fabrication of nanostructured SERS substrates on conductive solid platforms for environmental application. Critical Reviews in Environmental Science and Technology 49:1294−329

doi: 10.1080/10643389.2019.1576468
[45]

Brandt J, Mattsson K, Hassellöv M. 2021. Deep learning for reconstructing low-quality FTIR and Raman Spectra─a case study in microplastic analyses. Analytical Chemistry 93:16360−68

doi: 10.1021/acs.analchem.1c02618
[46]

Paul A, Wander L, Becker R, Goedecke C, Braun U. 2019. High-throughput NIR spectroscopic (NIRS) detection of microplastics in soil. Environmental Science and Pollution Research International 26:7364−74

doi: 10.1007/s11356-018-2180-2
[47]

Vidal C, Pasquini C. 2021. A comprehensive and fast microplastics identification based on near-infrared hyperspectral imaging (HSI-NIR) and chemometrics. Environmental Pollution 285:117251

doi: 10.1016/j.envpol.2021.117251
[48]

Huang H, Sun Z, Zhang Z, Chen X, Di Y, et al. 2021. The identification of spherical engineered microplastics and microalgae by micro-hyperspectral imaging. Bulletin of Environmental Contamination and Toxicology 107:764−69

doi: 10.1007/s00128-021-03131-9
[49]

Hermabessiere L, Himber C, Boricaud B, Kazour M, Amara R, et al. 2018. Optimization, performance, and application of a pyrolysis-GC/MS method for the identification of microplastics. Analytical and Bioanalytical Chemistry 410:6663−76

doi: 10.1007/s00216-018-1279-0
[50]

Vilakati B, Sivasankar V, Nyoni H, Mamba BB, Omine K, et al. 2021. The Py - GC-TOF-MS analysis and characterization of microplastics (MPs) in a wastewater treatment plant in Gauteng Province, South Africa. Ecotoxicology and Environmental Safety 222:112478

doi: 10.1016/j.ecoenv.2021.112478
[51]

Liu Y, Li R, Yu J, Ni F, Sheng Y, et al. 2021. Separation and identification of microplastics in marine organisms by TGA-FTIR-GC/MS: a case study of mussels from coastal China. Environmental Pollution 272:115946

doi: 10.1016/j.envpol.2020.115946
[52]

Cutroneo L, Reboa A, Besio G, Borgogno F, Canesi L, et al. 2020. Microplastics in seawater: sampling strategies, laboratory methodologies, and identification techniques applied to port environment. Environmental Science and Pollution Research International 27:8938−52

doi: 10.1007/s11356-020-07783-8
[53]

Shan J, Zhao J, Zhang Y, Liu L, Wu F, et al. 2019. Simple and rapid detection of microplastics in seawater using hyperspectral imaging technology. Analytica Chimica Acta 1050:161−68

doi: 10.1016/j.aca.2018.11.008
[54]

Fu Z, Chen G, Wang W, Wang J. 2020. Microplastic pollution research methodologies, abundance, characteristics and risk assessments for aquatic biota in China. Environmental Pollution 266:115098

doi: 10.1016/j.envpol.2020.115098
[55]

Kumar R, Sharma P, Bandyopadhyay S. 2021. Evidence of microplastics in wetlands: extraction and quantification in freshwater and coastal ecosystems. Journal of Water Process Engineering 40:101966

doi: 10.1016/j.jwpe.2021.101966
[56]

Sun J, Dai X, Wang Q, van Loosdrecht MCM, Ni B. 2019. Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Research 152:21−37

doi: 10.1016/j.watres.2018.12.050
[57]

Li Q, Wu J, Zhao X, Gu X, Ji R. 2019. Separation and identification of microplastics from soil and sewage sludge. Environmental Pollution 254:113076

doi: 10.1016/j.envpol.2019.113076
[58]

Castelvetro V, Corti A, Biale G, Ceccarini A, Degano I, et al. 2021. New methodologies for the detection, identification, and quantification of microplastics and their environmental degradation by-products. Environmental Science and Pollution Research International 28:46764−80

doi: 10.1007/s11356-021-12466-z
[59]

Lv L, Yan X, Feng L, Jiang S, Lu Z, et al. 2021. Challenge for the detection of microplastics in the environment. Water Environment Research 93:5−15

doi: 10.1002/wer.1281
[60]

Deng Y, Zhang Y, Lemos B, Ren H. 2017. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Scientific Reports 7:46687

doi: 10.1038/srep46687
[61]

Braun T, Ehrlich L, Henrich W, Koeppel S, Lomako I, et al. 2021. Detection of microplastic in human placenta and meconium in a clinical setting. Pharmaceutics 13:921

doi: 10.3390/pharmaceutics13070921
[62]

Syakti AD, Hidayati NV, Jaya YV, Siregar SH, Yude R, et al. 2018. Simultaneous grading of microplastic size sampling in the Small Islands of Bintan water, Indonesia. Marine Pollution Bulletin 137:593−600

doi: 10.1016/j.marpolbul.2018.11.005
[63]

Baini M, Fossi MC, Galli M, Caliani I, Campani T, et al. 2018. Abundance and characterization of microplastics in the coastal waters of Tuscany (Italy): the application of the MSFD monitoring protocol in the Mediterranean Sea. Marine Pollution Bulletin 133:543−52

doi: 10.1016/j.marpolbul.2018.06.016
[64]

Pan Z, Guo H, Chen H, Wang S, Sun X, et al. 2019. Microplastics in the Northwestern Pacific: abundance, distribution, and characteristics. Science of The Total Environment 650:1913−22

doi: 10.1016/j.scitotenv.2018.09.244
[65]

Zobkov MB, Esiukova EE, Zyubin AY, Samusev IG. 2019. Microplastic content variation in water column: the observations employing a novel sampling tool in stratified Baltic Sea. Marine Pollution Bulletin 138:193−205

doi: 10.1016/j.marpolbul.2018.11.047
[66]

Bagaev A, Khatmullina L, Chubarenko I. 2018. Anthropogenic microlitter in the Baltic Sea water column. Marine Pollution Bulletin 129:918−23

doi: 10.1016/j.marpolbul.2017.10.049
[67]

Cai M, He H, Liu M, Li S, Tang G, et al. 2018. Lost but can't be neglected: huge quantities of small microplastics hide in the South China Sea. Science of The Total Environment 633:1206−16

doi: 10.1016/j.scitotenv.2018.03.197
[68]

Zhu J, Zhang Q, Li Y, Tan S, Kang Z, et al. 2019. Microplastic pollution in the Maowei Sea, a typical mariculture bay of China. Science of The Total Environment 658:62−68

doi: 10.1016/j.scitotenv.2018.12.192
[69]

Saliu F, Montano S, Garavaglia MG, Lasagni M, Seveso D, et al. 2018. Microplastic and charred microplastic in the Faafu Atoll, Maldives. Marine Pollution Bulletin 136:464−71

doi: 10.1016/j.marpolbul.2018.09.023
[70]

Li J, Yang D, Li L, Jabeen K, Shi H. 2015. Microplastics in commercial bivalves from China. Environmental Pollution 207:190−95

doi: 10.1016/j.envpol.2015.09.018
[71]

Piehl S, Leibner A, Löder MGJ, Dris R, Bogner C, et al. 2018. Identification and quantification of macro- and microplastics on an agricultural farmland. Scientific Reports 8:17950

doi: 10.1038/s41598-018-36172-y
[72]

Liu M, Lu S, Song Y, Lei L, Hu J, et al. 2018. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environmental Pollution 242:855−62

doi: 10.1016/j.envpol.2018.07.051
[73]

Azeem I, Adeel M, Ahmad MA, Shakoor N, Jiangcuo GD, et al. 2021. Uptake and accumulation of nano/microplastics in plants: a critical review. Nanomaterials 11:2935

doi: 10.3390/nano11112935
[74]

Li C, Gao Y, He S, Chi H, Li Z, et al. 2021. Quantification of nanoplastic uptake in cucumber plants by pyrolysis gas chromatography/mass spectrometry. Environmental Science & Technology Letters 8:633−38

doi: 10.1021/acs.estlett.1c00369
[75]

Lozano YM, Aguilar-Trigueros CA, Onandia G, Maaß S, Zhao T, et al. 2021. Effects of microplastics and drought on soil ecosystem functions and multifunctionality. Journal of Applied Ecology 58:988−96

doi: 10.1111/1365-2664.13839
[76]

Lozano YM, Lehnert T, Linck LT, Lehmann A, Rillig MC. 2021. Microplastic shape, polymer type, and concentration affect soil properties and plant biomass. Frontiers in Plant Science 12:616645

doi: 10.3389/fpls.2021.616645
[77]

Lian J, Wu J, Xiong H, Zeb A, Yang T, et al. 2020. Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.). Journal of Hazardous Materials 385:121620

doi: 10.1016/j.jhazmat.2019.121620
[78]

Li L, Luo Y, Peijnenburg WJGM, Li R, Yang J, et al. 2020. Confocal measurement of microplastics uptake by plants. MethodsX 7:100750

doi: 10.1016/j.mex.2019.11.023
[79]

Liu Y, Guo R, Zhang S, Sun Y, Wang F. 2022. Uptake and translocation of nano/microplastics by rice seedlings: evidence from a hydroponic experiment. Journal of Hazardous Materials 421:126700

doi: 10.1016/j.jhazmat.2021.126700
[80]

Dong Y, Gao M, Song Z, Qiu W. 2020. Microplastic particles increase arsenic toxicity to rice seedlings. Environmental Pollution 259:113892

doi: 10.1016/j.envpol.2019.113892
[81]

Li L, Zhou Q, Yin N, Tu C, Luo Y. 2019. Uptake and accumulation of microplastics in an edible plant. Chinese Science Bulletin 64:928−34

doi: 10.1360/N972018-00845
[82]

Sun X, Yuan X, Jia Y, Feng L, Zhu F, et al. 2020. Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nature Nanotechnology 15:755−60

doi: 10.1038/s41565-020-0707-4
[83]

Li L, Luo Y, Li R, Zhou Q, Peijnenburg WJGM, et al. 2020. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nature Sustainability 3:929−37

doi: 10.1038/s41893-020-0567-9
[84]

Luo Y, Li L, Feng Y, Li R, Yang J, et al. 2022. Quantitative tracing of uptake and transport of submicrometre plastics in crop plants using lanthanide chelates as a dual-functional tracer. Nature Nanotechnology 17:424−31

doi: 10.1038/s41565-021-01063-3
[85]

Yin L, Wen X, Huang D, Du C, Deng R, et al. 2021. Interactions between microplastics/nanoplastics and vascular plants. Environmental Pollution 290:117999

doi: 10.1016/j.envpol.2021.117999
[86]

Battisti C, Fanelli G, Filpa A, Cerfolli F. 2020. Giant Reed (Arundo donax) wrack as sink for plastic beach litter: first evidence and implication. Marine Pollution Bulletin 155:111179

doi: 10.1016/j.marpolbul.2020.111179
[87]

Taylor SE, Pearce CI, Sanguinet KA, Hu D, Chrisler WB, et al. 2020. Polystyrene nano- and microplastic accumulation at Arabidopsis and wheat root cap cells, but no evidence for uptake into roots. Environmental Science: Nano 7:1942−53

doi: 10.1039/D0EN00309C
[88]

Chen G, Feng Q, Wang J. 2020. Mini-review of microplastics in the atmosphere and their risks to humans. Science of the Total Environment 703:135504

doi: 10.1016/j.scitotenv.2019.135504
[89]

Liu K, Wang X, Song Z, Wei N, Li D. 2020. Terrestrial plants as a potential temporary sink of atmospheric microplastics during transport. Science of The Total Environment 742:140523

doi: 10.1016/j.scitotenv.2020.140523
[90]

Oliveri Conti G, Ferrante M, Banni M, Favara C, Nicolosi I, et al. 2020. Micro-and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environmental Research 187:109677

doi: 10.1016/j.envres.2020.109677
[91]

Zhang F, Zhao Y, Wang D, Yan M, Zhang J, et al. 2021. Current technologies for plastic waste treatment: a review. Journal of Cleaner Production 282:124523

doi: 10.1016/j.jclepro.2020.124523
[92]

Dovidat LC, Brinkmann BW, Vijver MG, Bosker T. 2020. Plastic particles adsorb to the roots of freshwater vascular plant Spirodela polyrhiza but do not impair growth. Limnology and Oceanography Letters 5:37−45

doi: 10.1002/lol2.10118
[93]

Mateos-Cárdenas A, Scott DT, Seitmaganbetova G, van Pelt Frank FNAM, O'Halloran J, et al. 2019. Polyethylene microplastics adhere to Lemna minor (L.), yet have no effects on plant growth or feeding by Gammarus duebeni (Lillj.). Science of The Total Environment 689:413−21

doi: 10.1016/j.scitotenv.2019.06.359
[94]

Cózar A, Echevarría F, González-Gordillo JI, Irigoien X, Úbeda B, et al. 2014. Plastic debris in the open ocean. Proceedings of the National Academy of Sciences of the United States of America 111:10239−44

doi: 10.1073/pnas.1314705111
[95]

Jiang X, Chen H, Liao Y, Ye Z, Li M, et al. 2019. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. Environmental Pollution 250:831−38

doi: 10.1016/j.envpol.2019.04.055
[96]

Zhou J, Gui H, Banfield CC, Wen Y, Zang H, et al. 2021. The microplastisphere: biodegradable microplastics addition alters soil microbial community structure and function. Soil Biology and Biochemistry 156:108211

doi: 10.1016/j.soilbio.2021.108211
[97]

Liu L, Xu K, Zhang B, Ye Y, Zhang Q, et al. 2021. Cellular internalization and release of polystyrene microplastics and nanoplastics. Science of The Total Environment 779:146523

doi: 10.1016/j.scitotenv.2021.146523
[98]

Giorgetti L, Spanò C, Muccifora S, Bottega S, Barbieri F, et al. 2020. Exploring the interaction between polystyrene nanoplastics and Allium cepa during germination: Internalization in root cells, induction of toxicity and oxidative stress. Plant Physiology and Biochemistry 149:170−77

doi: 10.1016/j.plaphy.2020.02.014
[99]

Schreck E, Dappe V, Sarret G, Sobanska S, Nowak D, et al. 2014. Foliar or root exposures to smelter particles: consequences for lead compartmentalization and speciation in plant leaves. Science of The Total Environment 476–477:667−76

doi: 10.1016/j.scitotenv.2013.12.089
[100]

Bi M, He Q, Chen Y. 2020. What roles are terrestrial plants playing in global microplastic cycling? Environmental Science & Technology 54:5325−27

doi: 10.1021/acs.est.0c01009
[101]

Lian J, Liu W, Meng L, Wu J, Chao L, et al. 2021. Foliar-applied polystyrene nanoplastics (PSNPs) reduce the growth and nutritional quality of lettuce (Lactuca sativa L.). Environmental Pollution 280:116978

doi: 10.1016/j.envpol.2021.116978
[102]

Sun H, Lei C, Xu J, Li R. 2021. Foliar uptake and leaf-to-root translocation of nanoplastics with different coating charge in maize plants. Journal of Hazardous Materials 416:125854

doi: 10.1016/j.jhazmat.2021.125854
[103]

Kalčíková G, Gotvajn AŽ, Kladnik A, Jemec A. 2017. Impact of polyethylene microbeads on the floating freshwater plant duckweed Lemna minor. Environmental Pollution 230:1108−15

doi: 10.1016/j.envpol.2017.07.050
[104]

van Weert S, Redondo-Hasselerharm PE, Diepens NJ, Koelmans AA. 2019. Effects of nanoplastics and microplastics on the growth of sediment-rooted macrophytes. Science of the Total Environment 654:1040−47

doi: 10.1016/j.scitotenv.2018.11.183
[105]

Yu H, Zhang X, Hu J, Peng J, Qu J. 2020. Ecotoxicity of polystyrene microplastics to submerged carnivorous Utricularia vulgaris plants in freshwater ecosystems. Environmental Pollution 265:114830

doi: 10.1016/j.envpol.2020.114830
[106]

Bosker T, Bouwman LJ, Brun NR, Behrens P, Vijver MG. 2019. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere 226:774−81

doi: 10.1016/j.chemosphere.2019.03.163
[107]

de Souza Machado AA, Lau CW, Kloas W, Bergmann J, Bachelier JB, et al. 2019. Microplastics can change soil properties and affect plant performance. Environmental Science & Technology 53:6044−52

doi: 10.1021/acs.est.9b01339
[108]

Gao M, Liu Y, Song Z. 2019. Effects of polyethylene microplastic on the phytotoxicity of di-n-butyl phthalate in lettuce (Lactuca sativa L. var. ramosa Hort). Chemosphere 237:124482

doi: 10.1016/j.chemosphere.2019.124482
[109]

Pignattelli S, Broccoli A, Renzi M. 2020. Physiological responses of garden cress (L. sativum) to different types of microplastics. Science of the Total Environment 727:138609

doi: 10.1016/j.scitotenv.2020.138609
[110]

Wang F, Zhang X, Zhang S, Zhang S, Sun Y. 2020. Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil. Chemosphere 254:126791

doi: 10.1016/j.chemosphere.2020.126791
[111]

Meng F, Yang X, Riksen M, Xu M, Geissen V. 2021. Response of common bean (Phaseolus vulgaris L.) growth to soil contaminated with microplastics. Science of The Total Environment 755:142516

doi: 10.1016/j.scitotenv.2020.142516
[112]

Qi Y, Yang X, Pelaez AM, Lwanga EH, Beriot N, et al. 2018. Macro- and micro- plastics in soil-plant system: effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Science of The Total Environment 645:1048−56

doi: 10.1016/j.scitotenv.2018.07.229
[113]

Li Z, Li Q, Li R, Zhou J, Wang G. 2021. The distribution and impact of polystyrene nanoplastics on cucumber plants. Environmental Science and Pollution Research 28:16042−53

doi: 10.1007/s11356-020-11702-2
[114]

Lian J, Liu W, Sun Y, Men S, Wu J, et al. 2022. Nanotoxicological effects and transcriptome mechanisms of wheat (Triticum aestivum L.) under stress of polystyrene nanoplastics. Journal of Hazardous Materials 423:127241

doi: 10.1016/j.jhazmat.2021.127241
[115]

Zhang Y, Yang X, Luo Z, Lai J, Li C, et al. 2022. Effects of polystyrene nanoplastics (PSNPs) on the physiology and molecular metabolism of corn (Zea mays L.) seedlings. Science of The Total Environment 806:150895

doi: 10.1016/j.scitotenv.2021.150895
[116]

Wang J, Lu S, Bian H, Xu M, Zhu W, et al. 2022. Effects of individual and combined polystyrene nanoplastics and phenanthrene on the enzymology, physiology, and transcriptome parameters of rice (Oryza sativa L.). Chemosphere 304:135341

doi: 10.1016/j.chemosphere.2022.135341
[117]

Wang J, Lu S, Guo L, Wang P, He C, et al. 2022. Effects of polystyrene nanoplastics with different functional groups on rice (Oryza sativa L.) seedlings: combined transcriptome, enzymology, and physiology. Science of The Total Environment 834:155092

doi: 10.1016/j.scitotenv.2022.155092
[118]

Yu C, Zeng H, Wang Q, Chen W, Chen W, et al. 2022. Multi-omics analysis reveals the molecular responses of Torreya grandis shoots to nanoplastic pollutant. Journal of Hazardous Materials 436:129181

doi: 10.1016/j.jhazmat.2022.129181
[119]

Zhou C, Lu C, Mai L, Bao L, Liu L, et al. 2021. Response of rice (Oryza sativa L.) roots to nanoplastic treatment at seedling stage. Journal of Hazardous Materials 401:123412

doi: 10.1016/j.jhazmat.2020.123412
[120]

Maity S, Chatterjee A, Guchhait R, De S, Pramanick K. 2020. Cytogenotoxic potential of a hazardous material, polystyrene microparticles on Allium cepa L. Journal of Hazardous Materials 385:121560

doi: 10.1016/j.jhazmat.2019.121560
[121]

Padervand M, Lichtfouse E, Robert D, Wang C. 2020. Removal of microplastics from the environment. A review. Environmental Chemistry Letters 18:807−28

doi: 10.1007/s10311-020-00983-1
[122]

Ahmed R, Hamid AK, Krebsbach SA, He J, Wang D. 2022. Critical review of microplastics removal from the environment. Chemosphere 293:1335577

doi: 10.1016/j.chemosphere.2022.133557
[123]

Zhang Y, Liu S, Liu Q, Wang X, Jiang Z, et al. 2019. The role of debris cover in catchment runoff: a case study of the Hailuogou catchment, south-eastern Tibetan Plateau. Water 11:2601

doi: 10.3390/w11122601
[124]

Fryczkowska B, Przywara L. 2021. Removal of microplastics from industrial wastewater utilizing an ultrafiltration composite membrane rGO/PAN application. Desalination and Water Treatment 214:252−62

doi: 10.5004/dwt.2021.26665
[125]

Tang Y, Zhang S, Su Y, Wu D, Zhao Y, et al. 2021. Removal of microplastics from aqueous solutions by magnetic carbon nanotubes. Chemical Engineering Journal 406:126804

doi: 10.1016/j.cej.2020.126804
[126]

Chen Y, Chen Y, Miao C, Wang Y, Gao G, et al. 2020. Metal-organic framework-based foams for efficient microplastics removal. Journal of Materials Chemistry A 8:14644−52

doi: 10.1039/D0TA04891G
[127]

Zandieh M, Liu JW. 2022. Removal and degradation of microplastics using the magnetic and nanozyme activities of bare iron oxide nanoaggregates. Angewandte Chemie International Edition 61:e202212013

doi: 10.1002/anie.202212013
[128]

Mishra SR, Ahmaruzzaman M. 2021. Cerium oxide and its nanocomposites: structure, synthesis, and wastewater treatment applications. Materials Today Communications 28:102562

doi: 10.1016/j.mtcomm.2021.102562
[129]

Qiu X, Ma S, Zhang J, Fang L, Guo X, et al. 2022. Dissolved organic matter promotes the aging process of polystyrene microplastics under dark and ultraviolet light conditions: the crucial role of reactive oxygen species. Environmental Science & Technology 56:10149−60

doi: 10.1021/acs.est.2c03309
[130]

Tian C, Lv J, Zhang W, Wang H, Chao J, et al. 2022. Accelerated degradation of microplastics at the liquid interface of ice crystals in frozen aqueous solutions. Angewandte Chemie International Edition 61:e202206947

doi: 10.1002/anie.202206947
[131]

Othman AR, Hasan HA, Muhamad MH, Ismail N', Abdullah SR. 2021. Microbial degradation of microplastics by enzymatic processes: a review. Environmental Chemistry Letters 19:3057−73

doi: 10.1007/s10311-021-01197-9
[132]

Jeyakumar D, Chirsteen J, Doble M. 2013. Synergistic effects of pretreatment and blending on fungi mediated biodegradation of polypropylenes. Bioresource Technology 148:78−85

doi: 10.1016/j.biortech.2013.08.074
[133]

Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, et al. 2016. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351:1196−99

doi: 10.1126/science.aad6359
[134]

Paço A, Duarte K, da Costa JP, Santos PSM, Pereira R, et al. 2017. Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Science of The Total Environment 586:10−15

doi: 10.1016/j.scitotenv.2017.02.017
[135]

Yuan J, Cao J, Yu F, Ma J. 2022. Microbial degradation of polystyrene microplastics by a novel isolated bacterium in aquatic ecosystem. Sustainable Chemistry and Pharmacy 30:100873

doi: 10.1016/j.scp.2022.100873
[136]

Mishra SR, Ahmaruzzaman M. 2022. Microplastics: identification, toxicity and their remediation from aqueous streams. Separation & Purification Reviews1−22

doi: 10.1080/15422119.2022.2096071
[137]

Nolte TM, Hartmann NB, Kleijn JM, Garnæs J, van de Meent D, et al. 2017. The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption. Aquatic Toxicology 183:11−20

doi: 10.1016/j.aquatox.2016.12.005
[138]

Sundbæk KB, Koch IDW, Villaro CG, Rasmussen NS, Holdt SL, et al. 2018. Sorption of fluorescent polystyrene microplastic particles to edible seaweed Fucus vesiculosus. Journal of Applied Phycology 30:2923−27

doi: 10.1007/s10811-018-1472-8
[139]

Urso M, Pumera M. 2022. Nano/microplastics capture and degradation by autonomous nano/microrobots: a perspective. Advanced Functional Materials 32:2112120

doi: 10.1002/adfm.202112120
[140]

Beladi-Mousavi SM, Hermanová S, Ying Y, Plutnar J, Pumera M. 2021. A maze in plastic wastes: autonomous motile photocatalytic microrobots against microplastics. ACS Applied Materials & Interfaces 13:25102−10

doi: 10.1021/acsami.1c04559
[141]

Zhou H, Mayorga-Martinez CC, Pumera M. 2021. Microplastic removal and degradation by mussel-inspired adhesive magnetic/enzymatic microrobots. Small Methods 5:2100230

doi: 10.1002/smtd.202100230
[142]

Urso M, Ussia M, Novotný F, Pumera M. 2022. Trapping and detecting nanoplastics by MXene-derived oxide microrobots. Nature Communications 13:3573

doi: 10.1038/s41467-022-31161-2
[143]

Toussaint B, Raffael B, Angers-Loustau A, Gilliland D, Kestens V, et al. 2019. Review of micro- and nanoplastic contamination in the food chain. Food Additives & Contaminants: Part A 36:639−73

doi: 10.1080/19440049.2019.1583381
[144]

Dessì C, Okoffo ED, O'Brien JW, Gallen M, Samanipour S, et al. 2021. Plastics contamination of store-bought rice. Journal of Hazardous Materials 416:125778

doi: 10.1016/j.jhazmat.2021.125778
[145]

Rillig MC, Lehmann A, de Souza Machado AA, Yang G. 2019. Microplastic effects on plants. New Phytologist 223:1066−70

doi: 10.1111/nph.15794
[146]

Schwabl P, Köppel S, Königshofer P, Bucsics T, Trauner M, et al. 2019. Detection of various microplastics in human stool: a prospective case series. Annals of Internal Medicine 171:453−57

doi: 10.7326/M19-0618
[147]

He D, Zhang Y, Gao W. 2021. Micro(nano)plastic contaminations from soils to plants: human food risks. Current Opinion in Food Science 41:116−21

doi: 10.1016/j.cofs.2021.04.001
[148]

Hirt N, Body-Malapel M. 2020. Immunotoxicity and intestinal effects of nano- and microplastics: a review of the literature. Particle and Fibre Toxicology 17:57

doi: 10.1186/s12989-020-00387-7
[149]

Powell JJ, Faria N, Thomas-McKay E, Pele LC. 2010. Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. Journal of Autoimmunity 34:J226−J233

doi: 10.1016/j.jaut.2009.11.006
[150]

Prüst M, Meijer J, Westerink RH. 2020. The plastic brain: neurotoxicity of micro- and nanoplastics. Particle and fibre Toxicology 17:24

doi: 10.1186/s12989-020-00358-y
[151]

Mamun AA, Prasetya TAE, Dewi IR, Ahmad M. 2023. Microplastics in human food chains: food becoming a threat to health safety. Science of The Total Environment 858:159834

doi: 10.1016/j.scitotenv.2022.159834