[1]

Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, et al. 2010. MYB transcription factors in Arabidopsis. Trends in Plant Science 15:573−81

doi: 10.1016/j.tplants.2010.06.005
[2]

Li C, Ng CKY, Fan L. 2015. MYB transcription factors, active players in abiotic stress signaling. Environmental and Experimental Botany 114:80−91

doi: 10.1016/j.envexpbot.2014.06.014
[3]

Daneva A, Gao Z, Van Durme M, Nowack MK. 2016. Functions and regulation of programmed cell death in plant development. Annual Review of Cell and Developmental Biology 32:441−68

doi: 10.1146/annurev-cellbio-111315-124915
[4]

Ma D, Constabel CP. 2019. MYB repressors as regulators of phenylpropanoid metabolism in plants. Trends in Plant Science 24:275−89

doi: 10.1016/j.tplants.2018.12.003
[5]

Aya K, Hiwatashi Y, Kojima M, Sakakibara H, Ueguchi-Tanaka M, et al. 2011. The Gibberellin perception system evolved to regulate a pre-existing GAMYB-mediated system during land plant evolution. Nature Communications 2:544

doi: 10.1038/ncomms1552
[6]

Higo A, Kawashima T, Borg M, Zhao M, López-Vidriero I, et al. 2018. Transcription factor DUO1 generated by neo-functionalization is associated with evolution of sperm differentiation in plants. Nature Communications 9:5283

doi: 10.1038/s41467-018-07728-3
[7]

Wang Z, Zhang B, Chen Z, Wu M, Chao D, et al. 2022. Three OsMYB36 members redundantly regulate Casparian strip formation at the root endodermis. The Plant Cell 34:2948−68

doi: 10.1093/plcell/koac140
[8]

Kamiya T, Borghi M, Wang P, Danku JMC, Kalmbach L, et al. 2015. The MYB36 transcription factor orchestrates Casparian strip formation. Proceedings of the National Academy of Sciences of the United States of America 112:10533−38

doi: 10.1073/pnas.1507691112
[9]

Liberman LM, Sparks EE, Moreno-Risueno MA, Petricka JJ, Benfey PN. 2015. MYB36 regulates the transition from proliferation to differentiation in the Arabidopsis root. Proceedings of the National Academy of Sciences of the United States of America 112:12099−104

doi: 10.1073/pnas.1515576112
[10]

Li P, Yu Q, Gu X, Xu C, Qi S, et al. 2018. Construction of a functional casparian strip in non-endodermal lineages is orchestrated by two parallel signaling systems in Arabidopsis thaliana. Current Biology 28:2777−86.e2

doi: 10.1016/j.cub.2018.07.028
[11]

Drapek C, Sparks EE, Marhavy P, Taylor I, Andersen TG, et al. 2018. Minimum requirements for changing and maintaining endodermis cell identity in the Arabidopsis root. Nature Plants 4:586−95

doi: 10.1038/s41477-018-0213-y
[12]

Wang C, Wang H, Li P, Li H, Xu C, et al. 2020. Developmental programs interact with abscisic acid to coordinate root suberization in Arabidopsis. The Plant Journal 104:241−51

doi: 10.1111/tpj.14920
[13]

Fernández-Marcos M, Desvoyes B, Manzano C, Liberman LM, Benfey PN, et al. 2017. Control of Arabidopsis lateral root primordium boundaries by MYB36. New Phytologist 213:105−12

doi: 10.1111/nph.14304
[14]

Xu H, Liu P, Wang C, Wu S, Dong C, et al. 2022. Transcriptional networks regulating suberin and lignin in endodermis link development and ABA response. Plant Physiology 190:1165−81

doi: 10.1093/plphys/kiac298
[15]

Hao N, Du Y, Li H, Wang C, Wang C, et al. 2018. CsMYB36 is involved in the formation of yellow green peel in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics 131:1659−69

doi: 10.1007/s00122-018-3105-7
[16]

Xu L, Cao M, Wang Q, Xu J, Liu C, et al. 2022. Insights into the plateau adaptation of Salvia castanea by comparative genomic and WGCNA analyses. Journal of Advanced Research 42:221−35

doi: 10.1016/j.jare.2022.02.004
[17]

Li Q, Fang X, Zhao Y, Cao R, Dong J, et al. 2022. The SmMYB36-SmERF6/SmERF115 module regulates the biosynthesis of tanshinones and phenolic acids in salvia miltiorrhiza hairy roots. Horticulture Research 10:uhac238

doi: 10.1093/hr/uhac238
[18]

Liu T, Chen T, Kan J, Yao Y, Guo D, et al. 2022. The GhMYB36 transcription factor confers resistance to biotic and abiotic stress by enhancing PR1 gene expression in plants. Plant Biotechnology Journal 20:722−35

doi: 10.1111/pbi.13751
[19]

Clauw P, Kerdaffrec E, Gunis J, Reichardt-Gomez I, Nizhynska V, et al. 2022. Locally adaptive temperature response of vegetative growth in Arabidopsis thaliana. eLife 29:e77913

doi: 10.7554/eLife.77913
[20]

Huang S, Li R, Zhang Z, Li L, Gu X, et al. 2009. The genome of the cucumber, Cucumis sativus L. Nature Genetics 41:1275−81

doi: 10.1038/ng.475
[21]

Li Q, Li H, Huang W, Xu Y, Zhou Q, et al. 2019. A chromosome-scale genome assembly of cucumber (Cucumis sativus L.). GigaScience 8:giz072

doi: 10.1093/gigascience/giz072
[22]

Wen H, Chen Y, Du H, Zhang L, Zhang K, et al. 2020. Genome-wide identification and characterization of the TCP gene family in cucumber (Cucumis sativus L.) and their transcriptional responses to different treatments. Genes 11:1379

doi: 10.3390/genes11111379
[23]

Gu R, Song X, Liu X, Yan L, Zhou Z, et al. 2020. Genome-wide analysis of CsWOX transcription factor gene family in cucumber (Cucumis sativus L.). Scientific Reports 10:6216

doi: 10.1038/s41598-020-63197-z
[24]

Lv D, Wang G, Xiong L, Sun J, Chen Y, et al. 2020. Genome-wide identification and characterization of lectin receptor-like kinase gene family in cucumber and expression profiling analysis under different treatments. Genes 11:1032

doi: 10.3390/genes11091032
[25]

Zhao J, Jiang L, Che G, Pan Y, Li Y, et al. 2019. A functional allele of CsFUL1 regulates fruit length through repressing CsSUP and inhibiting auxin transport in cucumber. The Plant Cell 31:1289−307

doi: 10.1105/tpc.18.00905
[26]

Shen J, Zhang Y, Ge D, Wang Z, Song W, et al. 2019. CsBRC1 inhibits axillary bud outgrowth by directly repressing the auxin efflux carrier CsPIN3 in cucumber. Proceedings of the National Academy of Sciences of the United States of America 116:17105−14

doi: 10.1073/pnas.1907968116
[27]

Xin T, Zhang Z, Li S, Zhang S, Li Q, et al. 2019. Genetic regulation of ethylene dosage for cucumber fruit elongation. The Plant Cell 31:1063−76

doi: 10.1105/tpc.18.00957
[28]

Xu X, Wei C, Liu Q, Qu W, Qi X, et al. 2020. The major-effect quantitative trait locus Fnl7.1 encodes a late embryogenesis abundant protein associated with fruit neck length in cucumber. Plant Biotechnology Journal 18:1598−609

doi: 10.1111/pbi.13326
[29]

Zhang H, Li S, Yang L, Cai G, Chen H, et al. 2021. Gain-of-function of the 1-aminocyclopropane-1-carboxylate synthase gene ACS1G induces female flower development in cucumber gynoecy. The Plant Cell 33:306−21

doi: 10.1093/plcell/koaa018
[30]

Wang Z, Zhou Z, Wang L, Yan S, Cheng Z, et al. 2022. The CsHEC1-CsOVATE module contributes to fruit neck length variation via modulating auxin biosynthesis in cucumber. Proceedings of the National Academy of Sciences of the United States of America 119:e2209717119

doi: 10.1073/pnas.2209717119
[31]

Che G, Pan Y, Liu X, Li M, Zhao J, et al. 2022. Natural variation in CRABS CLAW contributes to fruit length divergence in cucumber. The Plant Cell 25:koac335

doi: 10.1093/plcell/koac335
[32]

Qi X, Li Q, Shen J, Qian C, Xu X, et al. 2020. Sugar enhances waterlogging-induced adventitious root formation in cucumber by promoting auxin transport and signalling. Plant, Cell & Environment 43:1545−57

doi: 10.1111/pce.13738
[33]

Deng Y, Wang C, Zhang M, Wei L, Liao W. 2022. Identification of key genes during ethylene-induced adventitious root development in cucumber (Cucumis sativus L.). International Journal of Molecular Sciences 23:12981

doi: 10.3390/ijms232112981
[34]

Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, et al. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30:325−27

doi: 10.1093/nar/30.1.325
[35]

Ezer D, Shepherd SJ, Brestovitsky A, Dickinson P, Cortijo S, et al. 2017. The G-box transcriptional regulatory code in Arabidopsis. Plant Physiology 175:628−40

doi: 10.1104/pp.17.01086
[36]

Xu H, Shi X, He L, Guo Y, Zang D, et al. 2018. Arabidopsis thaliana trihelix transcription factor AST1 mediates salt and osmotic stress tolerance by binding to a novel AGAG-box and some GT motifs. Plant Cell Physiology 59:946−65

doi: 10.1093/pcp/pcy032
[37]

Rouster J, Leah R, Mundy J, Cameron-Mills V. 1997. Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain. The Plant Journal 11:513−23

doi: 10.1046/j.1365-313X.1997.11030513.x
[38]

Goldsbrough AP, Albrecht H, Stratford R. 1993. Salicylic acid-inducible binding of a tobacco nuclear protein to a 10 bp sequence which is highly conserved amongst stress-inducible genes. The Plant Journal 3:563−71

doi: 10.1046/j.1365-313X.1993.03040563.x
[39]

Shen Q, Ho TH. 1995. Functional dissection of an abscisic acid (ABA)-inducible genereveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element. The Plant Cell 7:295−307

doi: 10.1105/tpc.7.3.295
[40]

Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ. 1997. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. The Plant Cell 9:1963−71

doi: 10.1105/tpc.9.11.1963
[41]

Washida H, Wu CY, Suzuki A, Yamanouchi U, Akihama T, et al. 1999. Identification of cis-regulatory elements required for endosperm expression of the rice storage protein glutelin gene GluB-1. Plant Molecular Biology 40:1−12

doi: 10.1023/A:1026459229671
[42]

Li Z , Zhang Z, Yan P, Huang S, Fei Z, et al. 2011. RNA-Seq improves annotation of protein-coding genes in the cucumber genome. BMC Genomics 12:540

doi: 10.1186/1471-2164-12-540
[43]

Zhang X, Lai Y, Zhang W, Ahmad J, Qiu Y, et al. 2018. MicroRNAs and their targets in cucumber shoot apices in response to temperature and photoperiod. BMC Genomics 19:819

doi: 10.1186/s12864-018-5204-x
[44]

Zhang Y, Zhao G, Li Y, Mo N, Zhang J, et al. 2017. Transcriptomic analysis implies that GA regulates sex expression via ethylene-dependent and ethylene-independent pathways in cucumber (Cucumis sativus L.). Frontiers in Plant Science 19:8−10

doi: 10.3389/fpls.2017.00010
[45]

Ding B, Patterson EL, Holalu SV, Li J, Johnson GA, et al. 2020. Two MYB proteins in a self-organizing activator-inhibitor system produce spotted pigmentation patterns. Current Biology 30:802−814.e8

doi: 10.1016/j.cub.2019.12.067
[46]

Xiang X, Sun L, Yu P, Yang Z, Zhang P, et al. 2021. The MYB transcription factor Baymax1 plays a critical role in rice male fertility. Theoretical and Applied Genetics 134:453−71

doi: 10.1007/s00122-020-03706-w
[47]

Lin RC, Rausher MD. 2021. R2R3-MYB genes control petal pigmentation patterning in Clarkia gracilis ssp. sonomensis (Onagraceae). New Phytologist 229:1147−62

doi: 10.1111/nph.16908
[48]

Cohen H, Fedyuk V, Wang C, Wu S, Aharoni A. 2020. SUBERMAN regulates developmental suberization of the Arabidopsis root endodermis. The Plant Journal 102:431−47

doi: 10.1111/tpj.14711
[49]

Goyal K, Kaur K, Kaur G. 2020. Foliar treatment of potassium nitrate modulates the fermentative and sucrose metabolizing pathways in contrasting maize genotypes under water logging stress. Physiology and Molecular Biology of Plants 26:899−906

doi: 10.1007/s12298-020-00779-1
[50]

Bramley H, Turner NC, Turner DW, Tyerman SD. 2010. The contrasting influence of short-term hypoxia on the hydraulic properties of cells and roots of wheat and lupin. Functional Plant Biology 37:183−93

doi: 10.1071/FP09172
[51]

Sauter M. 2013. Root responses to flooding. Current Opinion in Plant Biology 16:282−86

doi: 10.1016/j.pbi.2013.03.013
[52]

Kęska K, Szcześniak MW, Makałowska I, Czernicka M. 2021. Long-term waterlogging as factor contributing to hypoxia stress tolerance enhancement in cucumber: comparative transcriptome analysis of waterlogging sensitive and tolerant accessions. Genes 12:189

doi: 10.3390/genes12020189