[1] |
Zhai H, Shi D, Shu H. 2007. Current status and developing trend of apple industry in China. Journal of Fruit Science 24:355−60 doi: 10.3969/j.issn.1009-9980.2007.03.019 |
[2] |
Wang T. 2017. Reasons and countermeasures for flavor diminishing of bagged apple fruit. Northern Fruits 6:34−35 |
[3] |
Li T, Lu S, Huang J, Chen L, Fan X. 2021. Research progress of apple quality evaluation standards. Journal of Agricultural Science and Technology 23:121−30 doi: 10.13304/j.nykjdb.2020.0780 |
[4] |
Bai S, Bi J, Fang F, Wang P, Gong L. 2011. Current research progress and prospects of technologies for apple quality evaluation. Food Science 32:286−90 |
[5] |
Nie J, Li Z, Li H, Li J, Wang K, et al. 2012. Evaluation indices for apple physicochemical quality. Scientia Agricultura Sinica 45:2895−903 doi: 10.3864/j.issn.0578-1752.2012.14.012 |
[6] |
Sievenpiper JL, de Souza RJ, Mirrahimi A, Yu ME, Carleton AJ, et al. 2012. Effect of fructose on body weight in controlled feeding trials a systematic review and meta-analysis. Annals of Internal Medicine 156:291−304 doi: 10.7326/0003-4819-156-4-201202210-00007 |
[7] |
Loescher WH; Marlow GC; Kennedy RA. 1982. Sorbitol metabolism and sink-source interconversions in developing apple leaves. Plant Physiology 70:335−39 doi: 10.1104/pp.70.2.335 |
[8] |
Doty TE. 1976. Fructose sweetness: a new dimension. Cereal Foods World 21:62−63 |
[9] |
Wei J, Qi X, Zhu X, Ma F. 2009. Relationship between the characteristics of sugar accumulation and fruit quality in apple (Malus domestica Borkh.) fruit. Acta Botanica Boreali-Occidentalia Sinica 29:1193−99 doi: 10.3321/j.issn:1000-4025.2009.06.020 |
[10] |
Li F. 2011. Research progress on sugar metabolism in fruits. Study of Science and Engineering at RTVU 1:27−28,32 doi: 10.3969/j.issn.1003-3319.2011.01.011 |
[11] |
Jia D, Mi W, Yang R, Chen S, Zhang F. 1991. Sugar and acid content of fruit and its classification standard associated with flavor in different apple cultivars. Acta Horticulturae Sinica 18:9−14 |
[12] |
Zheng L, Nie J, Yan Z, Xu G, Wang K, et al. 2015. Studies on the characteristics of the composition and content of soluble sugars in apple fruit. Acta Horticulturae Sinica 42:950−60 doi: 10.16420/j.issn.0513-353x.2015-0140 |
[13] |
Wang H, Chen X, Xin P, Zhang X, Ci Z, et al. 2007. Study on sugar and acid constituents in several early apple cultivars and evaluation of their flavor quality. Journal of Fruit Science 24:513−16 doi: 10.3969/j.issn.1009-9980.2007.04.020 |
[14] |
Liang J, Guo Y, Liu Y, Li M, Zhao Z. 2011. Analysis of content and constituents of sugar and organic acid in different apple cultivars. Journal of Northwest Agriculture and Forestry University 39:163−70 |
[15] |
Hecke K, Herbinger K, Veberič R, Trobec M, Toplak H, et al. 2006. Sugar-, acid- and phenol contents in apple cultivars from organic and integrated fruit cultivation. European Journal of Clinical Nutrition 60:1136−40 doi: 10.1038/sj.ejcn.1602430 |
[16] |
Wu J, Gao H, Zhao L, Liao X, Chen F, et al. 2007. Chemical compositional characterization of some apple cultivars. Food Chemistry 103:88−93 doi: 10.1016/j.foodchem.2006.07.030 |
[17] |
Ma B, Zhao S, Wu B, Wang D, Peng Q, et al. 2016. Construction of a high density linkage map and its application in the identification of QTLs for soluble sugar and organic acid components in apple. Tree Genetics & Genomes 12:1 doi: 10.1007/s11295-015-0959-6 |
[18] |
Wang Z, Ma B, Yang N, Jin L, Wang L, et al. 2022. Variation in the promoter of the sorbitol dehydrogenase gene MdSDH2 affects binding of the transcription factor MdABI3 and alters fructose content in apple fruit. The Plant Journal 109:1183−98 doi: 10.1111/tpj.15624 |
[19] |
Visser T, Schaap AA, Vries DP. 1968. Acidity and sweetness in apple and pear. Euphytica 17:153−67 doi: 10.1007/BF00021205 |
[20] |
Li B, Jing S, Ding Y, Zhang J. 1994. Studies of the inheritance and selection of sweetness and acidity in apples. Acta Genetica Sinica 21:147−54 |
[21] |
Guan YZ, Peace C, Rudell D, Verma S, Evans K. 2015. QTLs detected for individual sugars and soluble solids content in apple. Molecular Breeding 35:135 doi: 10.1007/s11032-015-0334-1 |
[22] |
Kunihisa M, Moriya S, Abe K, Okada K, Haji T, et al. 2014. Identification of QTLs for fruit quality traits in Japanese apples: QTLs for early ripening are tightly related to preharvest fruit drop. Breeding Science 64:240−51 doi: 10.1270/jsbbs.64.240 |
[23] |
Ma B, Chen J, Zheng H, Fang T, Ogutu C, et al. 2015. Comparative assessment of sugar and malic acid composition in cultivated and wild apples. Food Chemistry 172:86−91 doi: 10.1016/j.foodchem.2014.09.032 |
[24] |
Li M, Li P, Ma F, Dandekar AM, Cheng L. 2018. Sugar metabolism and accumulation in the fruit of transgenic apple trees with decreased sorbitol synthesis. Horticulture Research 5:60 doi: 10.1038/s41438-018-0064-8 |
[25] |
Zhou R, Cheng LL, Wayne R. 2003. Purification and characterization of sorbitol-6-phosphate phosphatase from apple leaves. Plant Science 165:227−32 doi: 10.1016/S0168-9452(03)00166-3 |
[26] |
Yang J, 2019. Function study of apple FRUCTOKINASE gene MDFRK2 in regulating sugar metabolism, Thesis, Northwest A&F University, Shaanxi Province. 5 pp. |
[27] |
Ruan YL. 2014. Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annual Review of Plant Biology 65:33−67 doi: 10.1146/annurev-arplant-050213-040251 |
[28] |
Li M, Li D, Feng F, Zhang S, Ma F, et al. 2016. Proteomic analysis reveals dynamic regulation of fruit development and sugar and acid accumulation in apple. Journal of Experimental Botany 67:5145−57 doi: 10.1093/jxb/erw277 |
[29] |
Su J, Zhu L, Liu X, Peng Y, Ma M, et al. 2022. Research progress on sugar metabolism and concentration regulation in fruit. Journal of Fruit Science 39:266−79 doi: 10.13925/j.cnki.gsxb.20210369 |
[30] |
Chen T, Qin G, Tian S. 2020. Regulatory network of fruit ripening: current understanding and future challenges. The New Phytologist 228:1219−26 doi: 10.1111/nph.16822 |
[31] |
Chen T, Zhang Z, Li B, Qin G, Tian S. 2021. Molecular basis for optimizing sugar metabolism and transport during fruit development. aBIOTECH 2:330−40 doi: 10.1007/s42994-021-00061-2 |
[32] |
Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, et al. 2010. The genome of the domesticated apple (Malus × domestica Borkh.). Nature Genetic 42:833−39 doi: 10.1038/ng.654 |
[33] |
Han Y, Zheng D, Vimolmangkang S, Khan MA, Beever JE, et al. 2011. Integration of physical and genetic maps in apple confirms whole-genome and segmental duplications in the apple genome. Journal of Experimental Botany 62:5117−30 doi: 10.1093/jxb/err215 |
[34] |
Hemmat M, Weeden NF, Manganaris AG, Lawson DM. 1994. Molecular marker linkage map for apple. Journal of Heredity 85:4−11 doi: 10.1093/oxfordjournals.jhered.a111390 |
[35] |
Maliepaard C, Alston FH, van Arkel G, Brown LM, Chevreau E, et al. 1998. Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. . Theoretical and Applied Genetics 97:60−73 doi: 10.1007/s001220050867 |
[36] |
Liebhard R, Koller B, Gianfranceschi L, Gessler C. 2003. Creating a saturated reference map for the apple (Malus × domestica Borkh.) genome. Theoretical & Applied Genetics 106:1497−508 doi: 10.1007/s00122-003-1209-0 |
[37] |
Kenis K, Keulemans J. 2005. Genetic linkage maps of two apple cultivars (Malus × domestica Borkh.) based on AFLP and microsatellite markers. Molecular Breeding 15:205−19 doi: 10.1007/s11032-004-5592-2 |
[38] |
Igarashi M, Abe Y, Hatsuyama Y, Ueda T, Fukasawa-Akada T, et al. 2008. Linkage maps of the apple (Malus × domestica Borkh.) cvs 'Ralls Janet' and 'Delicious' include newly developed EST markers. Molecular Breeding 22:95−118 doi: 10.1007/s11032-008-9159-5 |
[39] |
N'Diaye A, Van de Weg WE, Kodde LP, Koller B, Dunemann F, et al. 2008. Construction of an integrated consensus map of the apple genome based on four mapping populations. Tree Genetics & Genomes 4:727−43 doi: 10.1007/s11295-008-0146-0 |
[40] |
van Dyk MM, Soeker MK, Labuschagne IF, G. Rees DJG. 2010. Identification of a major QTL for time of initial vegetative budbreak in apple (Malus × domestica Borkh.). Tree Genetics & Genomes 6:489−502 doi: 10.1007/s11295-009-0266-1 |
[41] |
Zhang Q, Ma B, Li H, Chang Y, Han Y, et al. 2012. Identification, characterization, and utilization of genome-wide simple sequence repeats to identify a QTL for acidity in apple. BMC Genomics 13:537 doi: 10.1186/1471-2164-13-537 |
[42] |
Liu Y, Lan J, Wang C, Li B, Zhu J, et al. 2017. Investigation and genetic mapping of a Glomerella leaf spot resistance locus in apple. Plant Breeding 136:119−25 doi: 10.1111/pbr.12399 |
[43] |
Celton JM, Tustin DS, Chagné D, Gardiner SE. 2009. Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from Malus ESTs and Pyrus genomic sequences. Tree Genetic & Genomes 5:93−107 doi: 10.1007/s11295-008-0171-z |
[44] |
Antanaviciute L, Fernández-Fernández F, Jansen J, Banchi E, Evans KM, et al. 2012. Development of a dense SNP-based linkage map of an apple rootstock progeny using the Malus infinium whole genome genotyping array. BMC Genomics 13:203 doi: 10.1186/1471-2164-13-203 |
[45] |
Fernández-Fernández F, Antanaviciute L, van Dyk MM, Tobutt KR, Evans KM, et al. 2012. A genetic linkage map of an apple rootstock progeny anchored to the Malus genome sequence. Tree Genetics & Genomes 8:991−1002 doi: 10.1007/s11295-012-0478-7 |
[46] |
Khan MA, Han Y, Zhao YF, Troggio M, Korban SS. 2012. A multi-population consensus genetic map reveals inconsistent marker order among maps likely attributed to structural variations in the apple genome. PLoS One 7:e47864 doi: 10.1371/journal.pone.0047864 |
[47] |
Clark MD, Schmitz CA, Rosyara UR, Luby JJ, Bradeen JM. 2014. A consensus 'Honeycrisp' apple (Malus × domestica) genetic linkage map from three full-sib progeny populations. Tree Genetics & Genomes 10:627−39 doi: 10.1007/s11295-014-0709-1 |
[48] |
Howard NP, van de Weg E, Bedford DS, Peace CP, Vanderzande S, et al. 2017. Elucidation of the 'Honeycrisp' pedigree through haplotype analysis with a multi-family integrated SNP linkage map and a large apple (Malus×domestica) pedigree-connected SNP data set. Horticulture Research 4:17003 doi: 10.1038/hortres.2017.3 |
[49] |
Wang H, Zhao S, Mao K, Dong Q, Liang B, et al. 2018. Mapping QTLs for water-use efficiency reveals the potential candidate genes involved in regulating the trait in apple under drought stress. BMC Plant Biology 18:136 doi: 10.1186/s12870-018-1308-3 |
[50] |
Sun R, Chang Y, Yang F, Wang Y, Li H, et al. 2015. A dense SNP genetic map constructed using restriction site-associated DNA sequencing enables detection of QTLs controlling apple fruit quality. BMC Genomics 16:747 doi: 10.1186/s12864-015-1946-x |
[51] |
Falginella L, Cipriani G, Monte C, Gregori R, Testolin R, et al. 2015. A major QTL controlling apple skin russeting maps on the linkage group 12 of 'Renetta Grigia di Torriana'. BMC Plant Biology 15:150 doi: 10.1186/s12870-015-0507-4 |
[52] |
Yang C, Sha G, Wei T, Ma B, Li C, et al. 2021. Linkage map and QTL mapping of red flesh locus in apple using a R1R1 × R6R6 population. Horticultural Plant Journal 7:393−400 doi: 10.1016/j.hpj.2020.12.008 |
[53] |
Fernández-Fernández F, Evans KM, Clarke JB, Govan CL, James CM, et al. 2008. Development of an STS map of an interspecific progeny of Malus. Tree Genetics & Genomes 4:469−79 doi: 10.1007/s11295-007-0124-y |
[54] |
Moriya S, Iwanami H, Kotoda N, Haji T, Okada K, et al. 2012. Aligned genetic linkage maps of apple rootstock cultivar 'JM7' and Malus sieboldii 'Sanashi 63' constructed with novel EST-SSRs. Tree Genetics & Genomes 8:709−23 doi: 10.1007/s11295-011-0458-3 |
[55] |
Liu Z, Bao D, Liu D, Zhang Y, Ashraf M, et al. 2016. Construction of a genetic linkage map and QTL analysis of fruit-related traits in an F1 red fuji x Hongrou apple hybrid. Open Life Sciences 11:487−97 doi: 10.1515/biol-2016-0063 |
[56] |
Tan Y, Lv S, Liu X, Gao T, Li T, et al. 2017. Development of high-density interspecific genetic maps for the identification of QTLs conferring resistance to Valsa ceratosperma in apple. Euphytica 213:10 doi: 10.1007/s10681-016-1790-3 |
[57] |
Cai H, Wang Q, Gao J, Li C, Du X, et al. 2021. Construction of a high-density genetic linkage map and QTL analysis of morphological traits in an F1 Malus domestica × Malus baccata hybrid. Physiology and Molecular Biology of Plants 27:1997−2007 doi: 10.1007/s12298-021-01069-0 |
[58] |
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, et al. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379 doi: 10.1371/journal.pone.0019379 |
[59] |
Gardner KM, Brown P, Cooke TF, Cann S, Costa F, et al. 2014. Fast and cost-effective genetic mapping in apple using next-generation sequencing. G3 Genes|Genomes|Genetics 4:1681−87 doi: 10.1534/g3.114.011023 |
[60] |
Liebhard R, Kellerhals M, Pfammater W, Jertmini M, Gessler C. 2003. Mapping quantitative physiological traits in apple (Malus × domestica Borkh.). Plant Molecular Biology 52:511−26 doi: 10.1023/A:1024886500979 |
[61] |
Kenis K, Keulemans J, Davey MW. 2008. Identification and stability of QTLs for fruit quality traits in apple. Tree Genetics & Genomes 4:647−61 doi: 10.1007/s11295-008-0140-6 |
[62] |
Costa F. 2015. MetaQTL analysis provides a compendium of genomic loci controlling fruit quality traits in apple. Tree Genetics & Genomes 11:819 doi: 10.1007/s11295-014-0819-9 |
[63] |
Peace CP, Luby JJ, van de Weg WE, Bink MCAM, Lezzoni AF. 2014. A strategy for developing representative germplasm sets for systematic QTL validation, demonstrated for apple, peach, and sweet cherry. Tree Genetics & Genomes 10:1679−94 doi: 10.1007/s11295-014-0788-z |
[64] |
Liao L, Zhang W, Zhang B, Fang T, Wang X, et al. 2021. Unraveling a genetic roadmap for improved taste in the domesticated apple. Molecular Plant 14:1454−71 doi: 10.1016/j.molp.2021.05.018 |