[1]

Lopes MA, Larkins BA. 1993. Endosperm origin, development, and function. The Plant Cell 5:1383−99

doi: 10.1105/tpc.5.10.1383
[2]

Olsen OA. 2004. Nuclear endosperm development in cereals and Arabidopsis thaliana. The Plant cell 16:S214−S227

doi: 10.1105/tpc.017111
[3]

Evans MMS. 2007. The indeterminate gametophyte1 gene of maize encodes a LOB domain protein required for embryo sac and leaf development. The Plant Cell 19:46−62

doi: 10.1105/tpc.106.047506
[4]

He YH, Wang JG, Qi WW, Song RT. 2019. Maize Dek15 encodes the cohesin-loading complex subunit SCC4 and is essential for chromosome segregation and kernel development. The Plant Cell 31:465−85

doi: 10.1105/tpc.18.00921
[5]

Huang Y, Wang H, Huang X, Wang Q, Wang J, et al. 2019. Maize VKS1 Regulates Mitosis and Cytokinesis During Early Endosperm Development. The Plant Cell 31:1238−56

doi: 10.1105/tpc.18.00966
[6]

Leroux BM, Goodyke AJ, Schumacher KI, Abbott CP, Clore AM, et al. 2014. Maize early endosperm growth and development: From fertilization through cell type differentiation. American Journal of Botany 101:1259−74

doi: 10.3732/ajb.1400083
[7]

Wang A, Garcia D, Zhang HY, Feng K, Chaudhury A, et al. 2010. The VQ motif protein IKU1 regulates endosperm growth and seed size in Arabidopsis. The Plant Journal 63:670−79

doi: 10.1111/j.1365-313X.2010.04271.x
[8]

Olsen OA. 2001. Endosperm Development: Cellularization and cell fate specification. Annual Review of Plant Physiology and Plant Molecular Biology 52:233−67

doi: 10.1146/annurev.arplant.52.1.233
[9]

Sabelli PA, Larkins BA. 2009. The development of endosperm in grasses. Plant Physiology 149:14−26

doi: 10.1104/pp.108.129437
[10]

Yi F, Gu W, Chen J, Song N, Gao X, et al. 2019. High temporal-resolution transcriptome landscape of early maize seed development. The Plant Cell 31:974−92

doi: 10.1105/tpc.18.00961
[11]

Lai J, Dey N, Kim CS, Bharti AK, Rudd S, et al. 2004. Characterization of the maize endosperm transcriptome and its comparison to the rice genome. Genome Research 14:1932−37

doi: 10.1101/gr.2780504
[12]

Liu X, Fu J, Gu D, Liu W, Li T, et al. 2008. Genome-wide analysis of gene expression profiles during the kernel development of maize (Zea mays L.). Genomics 91:378−87

doi: 10.1016/j.ygeno.2007.12.002
[13]

Chen J, Lausser A, Dresselhaus T. 2014. Hormonal responses during early embryogenesis in maize. Biochemical Society Transactions 42:325−31

doi: 10.1042/BST20130260
[14]

Zhan J, Thakare D, Ma C, Lloyd A, Nixon NM, et al. 2015. RNA Sequencing of Laser-Capture Microdissected Compartments of the Maize Kernel Identifies Regulatory Modules Associated with Endosperm Cell Differentiation. The Plant Cell 27:513−31

doi: 10.1105/tpc.114.135657
[15]

Zhang S, Thakare D, Yadegari R. 2018. Laser-capture microdissection of maize kernel compartments for RNA-seq-based expression analysis. Methods in Molecular Biology 1676:153−63

doi: 10.1007/978-1-4939-7315-6_9
[16]

Kerk NM, Ceserani T, Tausta SL, Sussex IM, Nelson TM. 2003. Laser capture microdissection of cells from plant tissues. Plant Physiology 132:27−35

doi: 10.1104/pp.102.018127
[17]

Takahashi H, Kamakura H, Sato Y, Shiono K, Abiko T, et al. 2010. A method for obtaining high quality RNA from paraffin sections of plant tissues by laser microdissection. Journal of Plant Research 123:807−13

doi: 10.1007/s10265-010-0319-4
[18]

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114−20

doi: 10.1093/bioinformatics/btu170
[19]

Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12:357−60

doi: 10.1038/nmeth.3317
[20]

Anders S, Pyl PT, Huber W. 2015. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166−69

doi: 10.1093/bioinformatics/btu638
[21]

Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L. 2011. Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biology 12:R22

doi: 10.1186/gb-2011-12-3-r22
[22]

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B: Statistical Methodology 57:289−300

doi: 10.1111/j.2517-6161.1995.tb02031.x
[23]

Zhang B, Horvath S. 2005. A general framework for weighted gene co-expression network analysis. Statistical applications in genetics and molecular biology 4:17

doi: 10.2202/1544-6115.1128
[24]

Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

doi: 10.1186/1471-2105-9-559
[25]

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13:2498−504

doi: 10.1101/gr.1239303
[26]

Langfelder P, Horvath S. 2012. Fast R Functions for Robust Correlations and Hierarchical Clustering. Journal of Statistical Software 46:i11

[27]

Li X, Wu J, Yi F, Lai J, Chen J. 2023. High temporal-resolution transcriptome landscapes of maize embryo sac and ovule during early seed development. Plant Molecular Biology 111:233−48

doi: 10.1007/s11103-022-01318-0
[28]

Yue R, Tie S, Sun T, Zhang L, Yang Y, et al. 2015. Genome-wide identification and expression profiling analysis of ZmPIN, ZmPILS, ZmLAX and ZmABCB auxin transporter gene families in maize (Zea mays L. ) under various abiotic stresses. PLoS One 10:e0118751

doi: 10.1371/journal.pone.0118751
[29]

Hagen G, Guilfoyle T. 2002. Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Molecular Biology 49:373−85

doi: 10.1023/A:1015207114117
[30]

Nardmann J, Werr W. 2006. The shoot stem cell niche in angiosperms: expression patterns of WUS orthologues in rice and maize imply major modifications in the course of mono- and dicot evolution. Molecular Biology and Evolution 23:2492−504

doi: 10.1093/molbev/msl125
[31]

Lowe K, Wu E, Wang N, Hoerster G, Hastings C, et al. 2016. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. The Plant Cell 28:1998−2015

doi: 10.1105/tpc.16.00124
[32]

Myers PN, Setter TL, Madison JT, Thompson JF. 1990. Abscisic Acid inhibition of endosperm cell division in cultured maize kernels. Plant Physiology 94:1330−6

doi: 10.1104/pp.94.3.1330
[33]

Myers PN, Setter TL, Madison JT, Thompson JF. 1992. Endosperm cell division in maize kernels cultured at three levels of water potential. Plant Physiology 99:1051−56

doi: 10.1104/pp.99.3.1051
[34]

Guo L, Luo X, Li M, Joldersma D, Plunkert M, et al. 2022. Mechanism of fertilization-induced auxin synthesis in the endosperm for seed and fruit development. Nature Communications 13:3985

doi: 10.1038/s41467-022-31656-y
[35]

Figueiredo DD, Köhler C. 2018. Auxin: a molecular trigger of seed development. Genes Development 32:479−90

doi: 10.1101/gad.312546.118
[36]

Batista RA, Figueiredo DD, Santos-González J, Köhler C. 2019. Auxin regulates endosperm cellularization in Arabidopsis. Genes Development 33:466−76

doi: 10.1101/gad.316554.118
[37]

Bernardi J, Lanubile A, Li QB, Kumar D, Kladnik A, et al. 2012. Impaired auxin biosynthesis in the defective endosperm18 mutant is due to mutational loss of expression in the ZmYuc1 gene encoding endosperm-specific YUCCA1 protein in maize. Plant Physiology 160:1318−28

doi: 10.1104/pp.112.204743
[38]

Bernardi J, Battaglia R, Bagnaresi P, Lucini L, Marocco A. 2019. Transcriptomic and metabolomic analysis of ZmYUC1 mutant reveals the role of auxin during early endosperm formation in maize. Plant Science 281:133−45

doi: 10.1016/j.plantsci.2019.01.027
[39]

Zhang M, Zheng H, Jin L, Xing L, Zou J, et al. 2022. miR169o and ZmNF-YA13 act in concert to coordinate the expression of ZmYUC1 that determines seed size and weight in maize kernels. New Phytologist 235:2270−84

doi: 10.1111/nph.18317
[40]

Forestan C, Meda S, Varotto S. 2010. ZmPIN1-mediated auxin transport is related to cellular differentiation during maize embryogenesis and endosperm development. Plant Physiology 152:1373−90

doi: 10.1104/pp.109.150193
[41]

Tang X, Zhang ZY, Zhang WJ, Zhao XM, Li X, et al. 2010. Global gene profiling of laser-captured pollen mother cells indicates molecular pathways and gene subfamilies involved in rice meiosis. Plant Physiology 154:1855−70

doi: 10.1104/pp.110.161661
[42]

Xu X, Crow M, Rice BR, Li F, Harris B, et al. 2021. Single-cell RNA sequencing of developing maize ears facilitates functional analysis and trait candidate gene discovery. Developmental Cell 56:557−568.E6

doi: 10.1016/j.devcel.2020.12.015
[43]

Ortiz-Ramírez C, Guillotin B, Xu X, Rahni R, Zhang S, et al. 2021. Ground tissue circuitry regulates organ complexity in maize and Setaria. Science 374:1247−52

doi: 10.1126/science.abj2327
[44]

Giacomello S, Lundeberg J. 2018. Preparation of plant tissue to enable Spatial Transcriptomics profiling using barcoded microarrays. Nature Protocols 13:2425−46

doi: 10.1038/s41596-018-0046-1
[45]

Doll NM, Just J, Brunaud V, Caïus J, Grimault A, et al. 2020. Transcriptomics at Maize Embryo/Endosperm Interfaces Identifies a Transcriptionally Distinct Endosperm Subdomain Adjacent to the Embryo Scutellum. The Plant Cell 32:833−52

doi: 10.1105/tpc.19.00756
[46]

Zhao P, Zhou X, Shen K, Liu Z, Cheng T, et al. 2019. Two-step maternal-to-zygotic transition with two-phase parental genome contributions. Developmental Cell 49:882−893.e5

doi: 10.1016/j.devcel.2019.04.016