[1]

Sheng Y, Hao Z, Peng Y, Liu S, Hu L, et al. 2021. Morphological, phenological, and transcriptional analyses provide insight into the diverse flowering traits of a mutant of the relic woody plant Liriodendron chinense. Horticulture Research 8:174

doi: 10.1038/s41438-021-00610-2
[2]

Long X, Weng Y, Liu S, Hao Z, Sheng Y, et al. 2019. Genetic diversity and differentiation of relict plant Liriodendron populations based on 29 novel EST-SSR markers. Forests 10:334

doi: 10.3390/f10040334
[3]

Chen J, Hao Z, Guang X, Zhao C, Wang P, et al. 2019. Liriodendron genome sheds light on angiosperm phylogeny and species-pair differentiation. Nature Plants 5:18−25

doi: 10.1038/s41477-018-0323-6
[4]

Yin Z, Huang J, Fan R. 2005. Advances in embryological study of Liriodendron spp. Journal of Nanjing Forestry University 48:88−92

doi: 10.3969/j.jssn.1000-2006.2005.01.021
[5]

Hao Z, Zhang Z, Xiang D, Venglat P, Chen J, et al. 2021. Conserved, divergent and heterochronic gene expression during Brachypodium and Arabidopsis embryo development. Plant Reproduction 34:207−24

doi: 10.1007/s00497-021-00413-4
[6]

Guo H, Guo H, Zhang L, Fan Y, Fan Y, et al. 2019. SELTP-assembled battery drives totipotency of somatic plant cell. Plant Biotechnology Journal 17:1188−90

doi: 10.1111/pbi.13107
[7]

Ikeuchi M, Ogawa Y, Iwase A, Sugimoto K. 2016. Plant regeneration: cellular origins and molecular mechanisms. Development 143:1442−51

doi: 10.1242/dev.134668
[8]

Bogdanović MD, Ćuković KB, Subotić AR, Dragicević MB, Simonović AD, et al. 2021. Secondary somatic embryogenesis in Centaurium erythraea Rafn. Plants 10:199

doi: 10.3390/plants10020199
[9]

Xu Z, Zhang X, Su Y, Hu Y, Xu L, et al. 2019. Plant cell totipotency and regeneration. SCIENTIA SINICA Vitae 49:1282−300

[10]

Corredoira E, Merkle SA, Martínez MT, Toribio M, Canhoto JM, et al. 2019. Non-zygotic embryogenesis in hardwood species. Critical Reviews in Plant Sciences 38:29−97

doi: 10.1080/07352689.2018.1551122
[11]

Behera PP, Sivasankarreddy K, Prasanna VSSV. 2022. Somatic embryogenesis and plant regeneration in horticultural crops. In Commercial Scale Tissue Culture for Horticulture and Plantation Crops, eds Gupta S, Chaturvedi P. pp ix, 335. Singapore: Springer Nature Singapore. 197−217 pp. https://doi.org/10.1007/978-981-19-0055-6_9

[12]

Li M, Wang D, Long X, Hao Z, Lu Y, et al. 2022. Agrobacterium-mediated genetic transformation of embryogenic callus in aLiriodendron hybrid (L. Chinense × L. Tulipifera). Frontiers in Plant Science 13:802128

doi: 10.3389/fpls.2022.802128
[13]

Wang D, Lu F, Lu Y, Cheng T, Shi J, et al. 2021. Identification of miR397a and its Functional characterization in callus growth and gevelopment by regulating its target in Liriodendron. Forests 12:912

doi: 10.3390/f12070912
[14]

Haecker A, Groß-Hardt R, Geiges B, Sarkar A, Breuninger H, et al. 2004. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131:657−68

doi: 10.1242/dev.00963
[15]

Holt AL, van Haperen JM, Groot EP, Laux T. 2014. Signaling in shoot and flower meristems of Arabidopsis thaliana. Current Opinion in Plant Biology 17:96−102

doi: 10.1016/j.pbi.2013.11.011
[16]

Su Y, Zhao X, Liu Y, Zhang C, O'Neill SD, et al. 2009. Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. The Plant Journal 59:448−60

doi: 10.1111/j.1365-313X.2009.03880.x
[17]

Wang F, Shang G, Wu L, Xu Z, Zhao X, et al. 2020. Chromatin accessibility dynamics and a hierarchical transcriptional regulatory network structure for plant somatic embryogenesis. Developmental Cell 54:742−757.e8

doi: 10.1016/j.devcel.2020.07.003
[18]

Wang Z. 2008. Achievements and strategies of hybrid breeding for Liriodendron genus. China Forestry Science and Technology 22:1−4

doi: 10.3969/j.issn.1000-8101.2008.05.001
[19]

Chen J, Shi J, Zhu G, Huang M. 2003. Studies on the somatic embryogenesis of Liriodendron hybrids (L.chinense × L. tulipifera). Scientia Silvae Sinicae 39:49−53

[20]

Musielak TJ, Bürgel P, Kolb M, Bayer M. 2016. Use of SCRI renaissance 2200 (SR2200) as a versatile dye for imaging of developing embryos, whole ovules, pollen tubes and roots. BIO-PROTOCOL 6:e1935

doi: 10.21769/BioProtoc.1935
[21]

Wickramasuriya AM, Dunwell JM. 2015. Global scale transcriptome analysis of Arabidopsis embryogenesis in vitro. BMC Genomics 16:301

doi: 10.1186/s12864-015-1504-6
[22]

van der Graaff E, Laux T, Rensing SA. 2009. The WUS homeobox-containing (WOX) protein family. Genome Biology 10:248

doi: 10.1186/gb-2009-10-12-248
[23]

Nardmann J, Zimmermann R, Durantini D, Kranz E, Werr W. 2007. WOX gene phylogeny in poaceae: a comparative approach addressing leaf and embryo development. Molecular Biology and Evolution 24:2474−84

doi: 10.1093/molbev/msm182
[24]

Breuninger H, Rikirsch E, Hermann M, Ueda M, Laux T. 2008. Differential expression of WOX genes mediates apical-basal axis formation in the Arabidopsis embryo. Developmental Cell 14:867−76

doi: 10.1016/j.devcel.2008.03.008
[25]

Ji J, Shimizu R, Sinha N, Scanlon MJ. 2010. Analyses of WOX4 transgenics provide further evidence for the evolution of the WOX gene family during the regulation of diverse stem cell functions. Plant Signaling & Behavior 5:916−20

doi: 10.4161/psb.5.7.12104
[26]

Hirakawa Y, Kondo Y, Fukuda H. 2010. TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. The Plant Cell 22:2618−29

doi: 10.1105/tpc.110.076083
[27]

Dolzblasz A, Nardmann J, Clerici E, Causier B, van der Graaff E, et al. 2016. Stem cell regulation by Arabidopsis WOX genes. Molecular Plant 9:1028−39

doi: 10.1016/j.molp.2016.04.007
[28]

Laux T, Mayer KF, Berger J, Jürgens G. 1996. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122:87−96

doi: 10.1242/dev.122.1.87
[29]

Pi L, Aichinger E, van der Graaff E, Llavata-Peris CI, Weijers D, et al. 2015. Organizer-derived WOX5 signal maintains root columella stem cells through chromatin-mediated repression of CDF4 expression. Developmental Cell 33:576−88

doi: 10.1016/j.devcel.2015.04.024
[30]

Nakata M, Matsumoto N, Tsugeki R, Rikirsch E, Laux T, et al. 2012. Roles of the middle domain-specific WUSCHEL-RELATED HOMEOBOX genes in early development of leaves in Arabidopsis. The Plant Cell 24:519−35

doi: 10.1105/tpc.111.092858
[31]

Kucukoglu M, Nilsson J, Zheng B, Chaabouni S, Nilsson O. 2017. WUSCHEL-RELATED HOMEOBOX4 (WOX4)-like genes regulate cambial cell division activity and secondary growth in Populus trees. New Phytologist 215:642−57

doi: 10.1111/nph.14631
[32]

Ueda M, Zhang Z, Laux T. 2011. Transcriptional activation of Arabidopsis axis patterning genes WOX8/9 links zygote polarity to embryo development. Developmental Cell 20:264−70

doi: 10.1016/j.devcel.2011.01.009
[33]

Etchells JP, Provost CM, Mishra L, Turner SR. 2013. WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organisation. Development 140:2224−34

doi: 10.1242/dev.091314
[34]

Mayer KF, Schoof H, Haecker A, Lenhard M, Jürgens G, et al. 1998. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805−15

doi: 10.1016/S0092-8674(00)81703-1
[35]

Bäurle I, Laux T. 2005. Regulation of WUSCHEL transcription in the stem cell niche of the Arabidopsis shoot meristem. The Plant Cell 17:2271−80

doi: 10.1105/tpc.105.032623
[36]

Lian G, Ding Z, Wang Q, Zhang D, Xu J. 2014. Origins and evolution of WUSCHEL-related homeobox protein family in plant kingdom. The Scientific World Journal 2014:534140

doi: 10.1155/2014/534140
[37]

Richards S, Wink RH, Simon R. 2015. Mathematical modelling of WOX5- and CLE40-mediated columella stem cell homeostasis in Arabidopsis. Journal of Experimental Botany 66:5375−84

doi: 10.1093/jxb/erv257
[38]

Bouchabké-Coussa O, Obellianne M, Linderme D, Montes E, Maia-Grondard A, et al. 2013. Wuschel overexpression promotes somatic embryogenesis and induces organogenesis in cotton (Gossypium hirsutum L.) tissues cultured in vitro. Plant Cell Reports 32:675−86

doi: 10.1007/s00299-013-1402-9
[39]

Burkart RC, Strotmann VI, Kirschner GK, Akinci A, Czempik L, et al. 2022. PLETHORA-WOX5 interaction and subnuclear localization control Arabidopsis root stem cell maintenance. EMBO Reports 23:e54105

doi: 10.15252/embr.202154105
[40]

Klimaszewska K, Pelletier G, Overton C, Stewart D, Rutledge RG. 2010. Hormonally regulated overexpression of Arabidopsis WUS and conifer LEC1 (CHAP3A) in transgenic white spruce: implications for somatic embryo development and somatic seedling growth. Plant Cell Reports 29:723−34

doi: 10.1007/s00299-010-0859-z
[41]

Suer S, Agusti J, Sanchez P, Schwarz M, Greb T. 2011. WOX4 imparts auxin responsiveness to cambium cells in Arabidopsis. The Plant Cell 23:3247−59

doi: 10.1105/tpc.111.087874
[42]

Park SO, Zheng Z, Oppenheimer DG, Hauser BA. 2005. The PRETTY FEW SEEDS2 gene encodes an Arabidopsis homeodomain protein that regulates ovule development. Development 132:841−49

doi: 10.1242/dev.01654
[43]

Nelson CD, Johnsen KH. 2008. Genomic and physiological approaches to advancing forest tree improvement. Tree Physiology 28:1135−43

doi: 10.1093/treephys/28.7.1135
[44]

Wu X, Dabi T, Weigel D. 2005. Requirement of homeobox gene STIMPY/WOX9 for Arabidopsis meristem growth and maintenance. Current Biology 15:436−40

doi: 10.1016/j.cub.2004.12.079
[45]

Skylar A, Hong F, Chory J, Weigel D, Wu X. 2010. STIMPY mediates cytokinin signaling during shoot meristem establishment in Arabidopsis seedlings. Development 137:541−49

doi: 10.1242/dev.041426
[46]

Kamiya N, Nagasaki H, Morikami A, Sato Y, Matsuoka M. 2003. Isolation and characterization of a rice WUSCHEL-type homeobox gene that is specifically expressed in the central cells of a quiescent center in the root apical meristem. The Plant Journal 35:429−41

doi: 10.1046/j.1365-313X.2003.01816.x
[47]

Gambino G, Minuto M, Boccacci P, Perrone I, Vallania R, et al. 2011. Characterization of expression dynamics of WOX homeodomain transcription factors during somatic embryogenesis in Vitis vinifera. Journal of Experimental Botany 62:1089−101

doi: 10.1093/jxb/erq349
[48]

Zhang M, Chen X, Lou X, Zhang Y, Han X, et al. 2023. Identification of WUSCHEL-related homeobox (WOX) gene family members and determination of their expression profiles during somatic embryogenesis in Phoebe bournei. Forestry Research 3:5

doi: 10.48130/FR-2023-0005
[49]

Liu J, Sheng L, Xu Y, Li J, Yang Z, et al. 2014. WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. The Plant Cell 26:1081−93

doi: 10.1105/tpc.114.122887
[50]

Musielak TJ, Schenkel L, Kolb M, Henschen A, Bayer M. 2015. A simple and versatile cell wall staining protocol to study plant reproduction. Plant Reproduction 28:161−69

doi: 10.1007/s00497-015-0267-1
[51]

Sieburth LE, Meyerowitz EM. 1997. Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically. The Plant Cell 9:355−65

doi: 10.1105/tpc.9.3.355
[52]

Jin J, Zhang H, Kong L, Gao G, Luo J. 2014. PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Research 42:D1182−D1187

doi: 10.1093/nar/gkt1016