[1]

Beres C, Costa GNS, Cabezudo I, da Silva-James NK, Teles ASC, et al. 2017. Towards integral utilization of grape pomace from winemaking process: A review. Waste Management 68:581−94

doi: 10.1016/j.wasman.2017.07.017
[2]

Martínez-Lüscher J, Brillante L, Kurtural SK. 2019. Flavonol profile is a reliable indicator to assess canopy architecture and the exposure of red wine grapes to solar radiation. Frontiers in Plant Science 10:10

doi: 10.3389/fpls.2019.00010
[3]

Heras-Roger J, Alonso-Alonso O, Gallo-Montesdeoca A, Díaz-Romero C, Darias-Martín J. 2016. Influence of copigmentation and phenolic composition on wine color. Journal of Food Science and Technology 53:2540−47

doi: 10.1007/s13197-016-2210-3
[4]

de Freitas V, Mateus N. 2001. Structural features of procyanidin interactions with salivary proteins. Journal of Agricultural and Food Chemistry 49:940−45

doi: 10.1021/jf000981z
[5]

Suarez DL, Celis N, Anderson RG, Sandhu D. 2019. Grape rootstock response to salinity, water and combined salinity and water stresses. Agronomy 9:321

doi: 10.3390/agronomy9060321
[6]

Bianchi D, Brancadoro L. 2021. Water use efficiency and nutritional status of a new grapevine rootstock selection. Horticulturae 7:503

doi: 10.3390/horticulturae7110503
[7]

Chitarra W, Perrone I, Avanzato CG, Minio A, Boccacci P, et al. 2017. Grapevine grafting: scion transcript profiling and defense-related metabolites induced by rootstocks. Frontiers in Plant Science 8:654

doi: 10.3389/fpls.2017.00654
[8]

Stockert CM, Bisson LF, Adams DO, Smart DR. 2013. Nitrogen status and fermentation dynamics for Merlot on two rootstocks. American Journal of Enology and Viticulture 64:195−202

doi: 10.5344/ajev.2013.12065
[9]

Wooldridge J, Olivier MP. 2014. Effects of weathered soil parent materials on Merlot grapevines grafted onto 110 Richter and 101-14Mgt rootstocks. South African Journal of Enology and Viticulture 35:59−67

doi: 10.21548/35-1-985
[10]

Koundouras S, Tsialtas IT, Zioziou E, Nikolaou N. 2008. Rootstock effects on the adaptive strategies of grapevine (Vitis vinifera L. cv. Cabernet–Sauvignon) under contrasting water status:Leaf physiological and structural responses. Agriculture, Ecosystems and Environment 128:86−96

doi: 10.1016/j.agee.2008.05.006
[11]

Ferrara G, Mazzeo A, Pacucci C, Matarrese AMS, Tarantino A, et al. 2016. Characterization of edible fig germplasm from Puglia, southeastern Italy: Is the distinction of three fig types (Smyrna, San Pedro and Common) still valid? Scientia Horticulturae 205:52−58

doi: 10.1016/j.scienta.2016.04.016
[12]

Torres R, Ferrara G, Soto F, López JA, Sanchez F, et al. 2017. Effects of soil and climate in a table grape vineyard with cover crops. Irrigation management using sensors networks. Ciência e Técnica Vitivinícola 32:72−81

doi: 10.1051/ctv/20173201072
[13]

Coletta A, Toci AT, Pati S, Ferrara G, Grieco F, et al. 2021. Effect of soil management and training system on Negroamaro wine aroma. Foods 10:454

doi: 10.3390/foods10020454
[14]

Keller M, Mills LJ, Harbertson JF. 2012. Rootstock effects on deficit-irrigated winegrapes in a dry climate: vigor, yield formation, and fruit ripening. American Journal of Enology and Viticulture 63:29−39

doi: 10.5344/ajev.2011.11078
[15]

Gutiérrez-Gamboa G, Gómez-Plaza E, Bautista-Ortín AB, Garde-Cerdán T, Moreno-Simunovic Y, et al. 2019. Rootstock effects on grape anthocyanins, skin and seed proanthocyanidins and wine color and phenolic compounds from Vitis vinifera L. Merlot grapevines. Journal of the Science of Food and Agriculture 99:2846−54

doi: 10.1002/jsfa.9496
[16]

Main G, Morris J, Striegler K. 2002. Rootstock effects on Chardonel productivity, fruit, and wine composition. American Journal of Enology and Viticulture 53:37−40

doi: 10.5344/ajev.2002.53.1.37
[17]

Ozden M, Vardin H, Simsek M, Karaaslan M. 2010. Effects of rootstocks and irrigation levels on grape quality of Vitis vinifera L. cv. Shiraz. African Journal of Biotechnology 9:3801−7

doi: 10.5897/ajb2010.000-3250
[18]

Olarte Mantilla SM, Collins C, Iland PG, Kidman CM, Ristic R, et al. 2018. Shiraz (Vitis vinifera L.) berry and wine sensory profiles and composition are modulated by rootstocks. American Journal of Enology and Viticulture 69:32−44

doi: 10.5344/ajev.2017.17017
[19]

Nelson CC, Kennedy JA, Zhang Y, Kurtural SK. 2016. Applied water and rootstock affect productivity and anthocyanin composition of Zinfandel in central California. American Journal of Enology and Viticulture 67:18−28

doi: 10.5344/ajev.2015.15043
[20]

Koundouras S, Hatzidimitriou E, Karamolegkou M, Dimopoulou E, Kallithraka S, et al. 2009. Irrigation and rootstock effects on the phenolic concentration and aroma potential of Vitis vinifera L. cv. Cabernet Sauvignon grapes. Journal of Agricultural and Food Chemistry 57:7805−13

doi: 10.1021/jf901063a
[21]

Han X, Wang Y, Lu HC, Yang HY, Li HQ, et al. 2022. The combined influence of rootstock and vintage climate on the grape and wine flavonoids of Vitis vinifera L. cv. Cabernet Sauvignon in eastern China. Frontiers in Plant Science 13:978497

doi: 10.3389/fpls.2022.978497
[22]

Cheng G, He YN, Yue TX, Wang J, Zhang ZW. 2014. Effects of climatic conditions and soil properties on Cabernet Sauvignon berry growth and anthocyanin profiles. Molecules 19:13683−703

doi: 10.3390/molecules190913683
[23]

Downey MO, Mazza M, Krstic MP. 2007. Development of a stable extract for anthocyanins and flavonols from grape skin. American Journal of Enology and Viticulture 58:358−64

doi: 10.5344/ajev.2007.58.3.358
[24]

Liang NN, He F, Pan QH, Wang J, Reeves MJ, Duan CQ. 2012. Optimization of sample preparation and phloroglucinol analysis of Marselan grape skin proanthocyanidins using HPLC-DAD-ESI-MS/MS. South African Journal of Enology and Viticulture 33:122−31

doi: 10.21548/33-1-1314
[25]

Sun RZ, Cheng G, Li Q, He YN, Wang Y, et al. 2017. Light-induced variation in phenolic compounds in Cabernet Sauvignon grapes (Vitis vinifera L.) involves extensive transcriptome reprogramming of biosynthetic enzymes, transcription factors, and phytohormonal regulators. Frontiers in Plant Science 8:547

doi: 10.3389/fpls.2017.00547
[26]

Li SY, He F, Zhu BQ, Wang J, Duan CQ. 2017. Comparison of phenolic and chromatic characteristics of dry red wines made from native Chinese grape species and Vitis vinifera. International Journal of Food Properties 20:2134−46

doi: 10.1080/10942912.2016.1233117
[27]

Habran A, Commisso M, Helwi P, Hilbert G, Negri S, et al. 2016. Roostocks/scion/nitrogen interactions affect secondary metabolism in the grape berry. Frontiers in Plant Science 7:1134

doi: 10.3389/fpls.2016.01134
[28]

Lu HC, Hu L, Liu Y, Cheng CF, Chen W, et al. 2023. Manipulating the severe shoot topping delays the harvest date and modifies the flavor composition of Cabernet Sauvignon wines in a semi-arid climate. Food Chemistry 405:135008

doi: 10.1016/j.foodchem.2022.135008
[29]

Tian MB, Liu Y, Lu HC, Hu L, Wang Y, et al. 2022. Cluster spatial positions varied the phenolics profiles of 'Cabernet Sauvignon' grapes and wines under a fan training system with multiple trunks. Food Chemistry 387:132930

doi: 10.1016/j.foodchem.2022.132930
[30]

Berdeja M, Hilbert G, Dai ZW, Lafontaine M, Stoll M, et al. 2014. Effect of water stress and rootstock genotype on Pinot Noir berry composition. Australian Journal of Grape and Wine Research 20:409−21

doi: 10.1111/ajgw.12091
[31]

Corso M, Vannozzi A, Ziliotto F, Zouine M, Maza E, et al. 2016. Grapevine rootstocks differentially affect the rate of ripening and modulate auxin-related genes in Cabernet Sauvignon berries. Frontiers in Plant Science 7:69

[32]

Garcia M, Gallego P, Daverède C, Ibrahim H. 2001. Effect of three rootstocks on grapevine (Vitis vinifera L.) cv. Negrette, grown hydroponically. I. Potassium, calcium and magnesium nutrition. South African Journal of Enology and Viticulture 22:101−3

doi: 10.21548/22-2-2202
[33]

Wang Y, Chen WK, Gao XT, He L, Yang XH, et al. 2019. Rootstock-mediated effects on Cabernet Sauvignon performance: vine growth, berry ripening, flavonoids, and aromatic profiles. International Journal of Molecular Sciences 20:401

doi: 10.3390/ijms20020401
[34]

Kodur S, Tisdall JM, Clingeleffer PR, Walker RR. 2013. Regulation of berry quality parameters in 'Shiraz' grapevines through rootstocks (Vitis). Vitis 52:125−28

[35]

Lu HC, Chen WK, Wang Y, Bai XJ, Cheng G, et al. 2021. Effect of the seasonal climatic variations on the flavonoid accumulation in Vitis vinifera cvs. 'Muscat Hamburg' and 'Victoria' grapes under the double cropping system. Foods 11:48

doi: 10.3390/foods11010048
[36]

Zhang K, Yuan L, Li Q, Wang R, Zhang ZZ. 2019. Comparison of the anthocyanins composition of five wine-making grape cultivars cultivated in the Wujiaqu area of Xinjiang, China. OENO One 3:549−59

doi: 10.20870/oeno-one.2019.53.3.2460
[37]

Portu J, López R, Santamaría P, Garde-Cerdán T. 2017. Elicitation with methyl jasmonate supported by precursor feeding with phenylalanine: Effect on Garnacha grape phenolic content. Food Chemistry 237:416−22

doi: 10.1016/j.foodchem.2017.05.126
[38]

Gutiérrez-Gamboa G, Verdugo-Vásquez N, Carrasco-Quiroz M, Garde-Cerdán T, Martínez-Gil AM, Moreno-Simunovic Y. 2018. Carignan phenolic composition in wines from ten sites of the Maule Valley (Chile): Location and rootstock implications. Scientia Horticulturae 234:63−73

doi: 10.1016/j.scienta.2018.02.013
[39]

Fanizza G, Colonna G, Resta P, Ferrara G. 1999. The effect of the number of RAPD markers on the evaluation of genotypic distances in Vitis vinifera. Euphytica 107:45−50

doi: 10.1023/A:1003535916622
[40]

Lu HC, Wei W, Wang Y, Duan CQ, Chen W, et al. 2021. Effects of sunlight exclusion on leaf gas exchange, berry composition, and wine flavour profile of Cabernet-Sauvignon from the foot of the north side of Mount Tianshan and a semi-arid continental climate. OENO One 55:267−83

doi: 10.20870/oeno-one.2021.55.2.4545
[41]

Lu HC, Tian MB, Shi N, Han X, Li HQ, et al. 2023. Severe shoot topping slows down berry sugar accumulation rate, alters the vine growth and photosynthetic capacity, and influences the flavoromics of Cabernet Sauvignon grapes in a semi-arid region. European Journal of Agronomy 145:126775

doi: 10.1016/j.eja.2023.126775
[42]

Li M, Yan X, Guo Z, Jia N, Yuan J, et al. 2019. Rootstock influence on vegetative growth, yield, and fruit quality of 'Petit Verdot'. European Journal of Horticultural Science 84:343−49

doi: 10.17660/eJHS.2019/84.6.3
[43]

Jin ZX, Sun TY, Sun H, Yue QY, Yao YX. 2016. Modifications of ‘Summer Black’ grape berry quality as affected by the different rootstocks. Scientia Horticulturae 210:130−37

doi: 10.1016/j.scienta.2016.07.023
[44]

Suriano S, Alba V, Di Gennaro D, Suriano MS, Savino M, et al. 2016. Genotype/rootstocks effect on the expression of anthocyanins and flavans in grapes and wines of Greco Nero n. (Vitis vinifera L.). Scientia Horticulturae 209:309−15

doi: 10.1016/j.scienta.2016.07.004
[45]

Harbertson JF, Keller M. 2012. Rootstock effects on deficit-irrigated winegrapes in a dry climate: grape and wine composition. American Journal of Enology and Viticulture 63:40−48

doi: 10.5344/ajev.2011.11079
[46]

Padilla-Gonzalez GF, Grosskopf E, Sadgrove NJ, Simmonds MSJ. 2022. Chemical diversity of flavan-3-ols in grape seeds: modulating factors and quality requirements. Plants 11:809

doi: 10.3390/plants11060809
[47]

Blancquaert EH, Oberholster A, Ricardo-da-Silva JM, Deloire AJ. 2019. Grape flavonoid evolution and composition under altered light and temperature conditions in Cabernet Sauvignon (Vitis vinifera L.). Frontiers in Plant Science 10:1062

doi: 10.3389/fpls.2019.01062
[48]

Busse-Valverde N, Bautista-Ortín AB, Gómez-Plaza E, Fernández-Fernández JI, Gil-Muñoz R. 2012. Influence of skin maceration time on the proanthocyanidin content of red wines. European Food Research and Technology 235:1117−23

doi: 10.1007/s00217-012-1842-4
[49]

Rizzuti A, Aguilera-Sáez LM, Gallo V, Cafagna I, Mastrorilli P, et al. 2015. On the use of Ethephon as abscising agent in cv. Crimson Seedless table grape production:combination of Fruit Detachment Force, Fruit Drop and metabolomics. Food Chemistry 171:341−50

doi: 10.1016/j.foodchem.2014.08.132