[1]

Sun Q, Sun H, Bell RL, Li L, Zhou G, et al. 2015. Field performance of vegetative form traits of neopolyploids produced by in vitro colchicine treatment in Pyrus communis. Scientia Horticulturae 193:182−87

doi: 10.1016/j.scienta.2015.06.047
[2]

SSoltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, et al. 2009. Polyploidy and angiosperm diversification. American Journal of Botany 96:336−48

doi: 10.3732/ajb.0800079
[3]

Kataoka I, Mizugami T, Kim JG, Beppu K, Fukuda T, et al. 2010. Ploidy variation of hardy kiwifruit (Actinidia arguta) resources and geographic distribution in Japan. Scientia Horticulturae 124:409−14

doi: 10.1016/j.scienta.2010.01.016
[4]

Perrier X, Jenny C, Bakry F, Karamura D, Kitavi M, et al. 2019. East African diploid and triploid bananas: a genetic complex transported from South-East Asia. Annals of Botany 123:19−36

doi: 10.1093/aob/mcy156
[5]

Edger PP, Poorten TJ, VanBuren R, Hardigan MA, Colle M, et al. 2019. Origin and evolution of the octoploid strawberry genome. Nature Genetics 51:541−47

doi: 10.1038/s41588-019-0356-4
[6]

Brown AG. 1960. Scab resistance in progenies of varieties of the cultivated pear. Euphytica 9:247−53

doi: 10.1007/BF00022230
[7]

Wang L, Gao X, Jia G. 2021. Stomata and ROS changes during Botrytis elliptica infection in diploid and tetraploid Lilium rosthornii Diels. Plant Physiology and Biochemistry 167:366−75

doi: 10.1016/j.plaphy.2021.08.008
[8]

Einset J. 1952. Spontaneous polyploidy in cultivated apples. Proceedings of the American Society for Horticultural Science 59:291−302

[9]

Wang X, Wang H, Shi C, Zhang X, Duan K, et al. 2015. Morphological, cytological and fertility consequences of a spontaneous tetraploid of the diploid pear (Pyrus pyrifolia Nakai) cultivar 'Cuiguan'. Scientia Horticulturae 189:59−65

doi: 10.1016/j.scienta.2015.03.048
[10]

Dhooghe E, Van Laere K, Eeckhaut T, Leus L, Van Huylenbroeck J. 2011. Mitotic chromosome doubling of plant tissues in vitro. Plant Cell, Tissue and Organ Culture (PCTOC) 104:359−73

doi: 10.1007/s11240-010-9786-5
[11]

Morejohn LC, Bureau TE, Tocchi LP, Fosket DE. 1984. Tubulins from different higher plant species are immunologically nonidentical and bind colchicine differentially. Proceedings of the National Academy of Sciences of the United States of America 81:1440−44

doi: 10.1073/pnas.81.5.1440
[12]

Zhou H, Zeng W, Yan H. 2017. In vitro induction of tetraploids in cassava variety 'Xinxuan 048' using colchicine. Plant Cell, Tissue and Organ Culture (PCTOC) 128:723−29

doi: 10.1007/s11240-016-1141-z
[13]

Li L, He P, Ou C, Li H, Zhang Z. 2007. In vitro induction of tetraploid from mature embryos of 'Golden Delicious' apple. Acta Horticulturae Sinica 34:1129−34

doi: 10.3321/j.issn:0513-353x.2007.05.010
[14]

Hamill SD, Smith MK, Dodd WA. 1992. In vitro induction of banana autotetraploids by colchicine treatment of micropropagated diploids. Australian Journal of Botany 40:887−96

doi: 10.1071/BT9920887
[15]

Shao J, Chen C, Deng X. 2003. In vitro induction of tetraploid in pomegranate (Punica granatum). Plant Cell, Tissue and Organ Culture 75:241−46

doi: 10.1023/A:1025871810813
[16]

Wu J, Mooney P. 2002. Autotetraploid tangor plant regeneration from in vitro Citrus somatic embryogenic callus treated with colchicine. Plant Cell, Tissue and Organ Culture 70:99−104

doi: 10.1023/A:1016029829649
[17]

Li J, Zhang M, Li X, Khan A, Kumar S, et al. 2022. Pear genetics: recent advances, new prospects, and a roadmap for the future. Horticulture Research 9:uhab040

doi: 10.1093/hr/uhab040
[18]

Lin S, Fang C. 1994. Studies on chromosome of Pyrus in China. Acta Horticulturae 367:27−32

doi: 10.17660/actahortic.1994.367.2
[19]

Cao Y, Huang L, Li S, Yang Y. 2002. Genetics of ploidy and hybridized combination types for polyploid breeding in pear. Acta Horticulturae 587:207−10

doi: 10.17660/actahortic.2002.587.24
[20]

Sun Q, Sun H, Li L, Bell RL. 2009. In vitro colchicine-induced polyploid plantlet production and regeneration from leaf explants of the diploid pear (Pyrus communis L.) cultivar, 'Fertility'. The Journal of Horticultural Science and Biotechnology 84:548−52

doi: 10.1080/14620316.2009.11512564
[21]

Kadota M, Niimi Y. 2002. In vitro induction of tetraploid plants from a diploid Japanese pear cultivar (Pyrus pyrifolia N. cv. Hosui). Plant Cell Reports 21:282−86

doi: 10.1007/s00299-002-0509-1
[22]

Eliášová A, Trávníček P, Mandák B, Münzbergová Z. 2014. Autotetraploids of Vicia cracca show a higher allelic richness in natural populations and a higher seed set after artificial selfing than diploids. Annals of Botany 113:159−70

doi: 10.1093/aob/mct252
[23]

Bingham ET, Groose RW, Woodfield DR, Kidwell KK. 1994. Complementary gene interactions in alfalfa are greater in autotetraploids than diploids. Crop Science 34:823−29

doi: 10.2135/cropsci1994.0011183X003400040001x
[24]

Podwyszyńska M, Gabryszewska E, Dyki B, Stępowska AA, Kowalski A, et al. 2015. Phenotypic and genome size changes (variation) in synthetic tetraploids of daylily (Hemerocallis) in relation to their diploid counterparts. Euphytica 203:1−16

doi: 10.1007/s10681-014-1212-3
[25]

Liu R, Gao C, Jin J, Wang Y, Jia X, et al. 2022. Induction and identification of tetraploids of pear plants (Pyrus bretschneideri and Pyrus betulaefolia). Scientia Horticulturae 304:111322

doi: 10.1016/j.scienta.2022.111322
[26]

Wu J, Wang Z, Shi Z, Zhang S, Ming R, et al. 2013. The genome of the pear (Pyrus bretschneideri Rehd.). Genome Research 23:396−408

doi: 10.1101/gr.144311.112
[27]

Arnon DI. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology 24:1−15

doi: 10.1104/pp.24.1.1
[28]

Wu X, Yin H, Chen Y, Li L, Wang Y, et al. 2017. Chemical composition, crystal morphology and key gene expression of cuticular waxes of Asian pears at harvest and after storage. Postharvest Biology and Technology 132:71−80

doi: 10.1016/j.postharvbio.2017.05.007
[29]

Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9:671−75

doi: 10.1038/nmeth.2089
[30]

Li Y, Yin Y, Chen S, Bi Y, Ge Y. 2014. Chemical composition of cuticular waxes during fruit development of Pingguoli pear and their potential role on early events of Alternaria alternata infection. Functional Plant Biology 41:313−20

doi: 10.1071/FP13184
[31]

Wu X, Yin H, Shi Z, Chen Y, Qi K, et al. 2018. Chemical composition and crystal morphology of epicuticular wax in mature fruits of 35 pear (Pyrus spp.) cultivars. Frontiers in Plant Science 9:679

doi: 10.3389/fpls.2018.00679
[32]

Luo Z, Iaffaldano BJ, Cornish K. 2018. Colchicine-induced polyploidy has the potential to improve rubber yield in Taraxacum kok-saghyz. Industrial Crops and Products 112:75−81

doi: 10.1016/j.indcrop.2017.11.010
[33]

Wang L, Zhang Q, Cao Q, Gao X, Jia G. 2020. An efficient method for inducing multiple genotypes of tetraploids Lilium rosthornii Diels. Plant Cell, Tissue and Organ Culture (PCTOC) 141:499−510

doi: 10.1007/s11240-020-01807-4
[34]

Zlesak DC, Thill CA, Anderson NO. 2005. Trifluralin-mediated polyploidization of Rosa chinensis minima (Sims) Voss seedlings. Euphytica 141:281−90

doi: 10.1007/s10681-005-7512-x
[35]

Urwin NAR, Horsnell J, Moon T. 2007. Generation and characterisation of colchicine-induced autotetraploid Lavandula angustifolia. Euphytica 156:257−66

doi: 10.1007/s10681-007-9373-y
[36]

Zhu Y, Tang W, Tang X, Wang L, Li W, et al. 2021. Transcriptome analysis of colchicine-induced tetraploid Kiwifruit leaves with increased biomass and cell size. Plant Biotechnology Reports 15:673−82

doi: 10.1007/s11816-021-00704-2
[37]

Rao S, Kang X, Li J, Chen J. 2019. Induction, identification and characterization of tetraploidy in Lycium ruthenicum. Breeding Science 69:160−68

doi: 10.1270/jsbbs.18144
[38]

Omidbaigi R, Mirzaee M, Hassani ME, Moghadam MS. 2010. Induction and identification of polyploidy in basil (Ocimum basilicum L.) medicinal plant by colchicine treatment. International Journal of Plant Production 4:87−98

doi: 10.22069/IJPP.2012.686
[39]

Shariat A, Sefidkon F. 2021. Tetraploid induction in savory (Satureja khuzistanica): cytological, morphological, phytochemical and physiological changes. Plant Cell, Tissue and Organ Culture (PCTOC) 146:137−48

doi: 10.1007/s11240-021-02053-y
[40]

Podwyszyńska M, Trzewik A, Marasek-Ciolakowska A. 2018. In vitro polyploidisation of tulips (Tulipa gesneriana L.) — Phenotype assessment of tetraploids. Scientia Horticulturae 242:155−63

doi: 10.1016/j.scienta.2018.07.007
[41]

Chen ZJ. 2010. Molecular mechanisms of polyploidy and hybrid vigor. Trends in Plant Science 15:57−71

doi: 10.1016/j.tplants.2009.12.003
[42]

Del Pozo JC, Ramirez-Parra E. 2014. Deciphering the molecular bases for drought tolerance in Arabidopsis autotetraploids. Plant, Cell & Environment 37:2722−37

doi: 10.1111/pce.12344
[43]

Yan Y, Qin S, Zhou N, Xie Y, He Y. 2022. Effects of colchicine on polyploidy induction of Buddleja lindleyana seeds. Plant Cell, Tissue and Organ Culture (PCTOC) 149:735−45

doi: 10.1007/s11240-022-02245-0
[44]

Abdoli M, Moieni A, Badi HN. 2013. Morphological, physiological, cytological and phytochemical studies in diploid and colchicine-induced tetraploid plants of Echinacea purpurea (L.). Acta Physiologiae Plantarum 35:2075−83

doi: 10.1007/s11738-013-1242-9
[45]

Rao S, Tian Y, Xia X, Li Y, Chen J. 2020. Chromosome doubling mediates superior drought tolerance in Lycium ruthenicum via abscisic acid signaling. Horticulture Research 7:40

doi: 10.1038/s41438-020-0260-1
[46]

Esfahani ST, Karimzadeh G, Naghavi MR. 2020. In vitro polyploidy induction in Persian Poppy (Papaver bracteatum Lindl.). Caryologia 73:133−44

doi: 10.13128/caryologia-169
[47]

Gomes SSL, Saldanha CW, Neves CS, Trevizani M, Raposo NRB, et al. 2014. Karyotype, genome size, and in vitro chromosome doubling of Pfaffia glomerata (Spreng.) Pedersen. Plant Cell, Tissue and Organ Culture (PCTOC) 118:45−56

doi: 10.1007/s11240-014-0460-1
[48]

Madani H, Hosseini B, Dehghan E, Rezaei-chiyaneh E. 2015. Enhanced production of scopolamine in induced autotetraploid plants of Hyoscyamus reticulatus L. Acta Physiologiae Plantarum 37:55

doi: 10.1007/s11738-015-1795-x
[49]

Bourdenx B, Bernard A, Domergue F, Pascal S, Léger A, et al. 2011. Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiology 156:29−45

doi: 10.1104/pp.111.172320
[50]

Adati T, Matsuda K. 1993. Feeding stimulants for various leaf beetles (Coleoptera, Chrysomelidae) in the leaf surface wax of their host plants. Applied Entomology and Zoology 28:319−24

doi: 10.1303/aez.28.319
[51]

Li G, Ishikawa Y. 2006. Leaf epicuticular wax chemicals of the Japanese knotweed Fallopia Japonica as oviposition stimulants for Ostrinia latipennis. Journal of Chemical Ecology 32:595−604

doi: 10.1007/s10886-005-9022-7
[52]

Spencer JL. 1996. Waxes enhance Plutella xylostella oviposition in response to sinigrin and cabbage homogenates. Entomologia Experimentalis et Applicata 81:165−73

doi: 10.1111/j.1570-7458.1996.tb02028.x