[1]

Limsupavanich R, Kropf D, Hunt M C, Boyle E, Boyle D, et al. 2004. Dynamics of myoglobin layer change during display of color-stable and color-labile beef muscles.

[2]

Jurić S, Jurić M, Król-Kilińska Ż, Vlahoviček-Kahlina K, Vinceković M, et al. 2022. Sources, stability, encapsulation and application of natural pigments in foods. Food Reviews International 38:1735−90

doi: 10.1080/87559129.2020.1837862
[3]

Carocho M, Barreiro MF, Morales P, Ferreira ICFR. 2014. Adding molecules to food, pros and cons:a review on synthetic and natural food additives. Comprehensive Reviews in Food Science and Food Safety 13:377−99

doi: 10.1111/1541-4337.12065
[4]

Chung KT. 2016. Azo dyes and human health: a review. Journal of Environmental Science and Health Part C 34:233−61

doi: 10.1080/10590501.2016.1236602
[5]

Okafor SN, Obonga W, Ezeokonkwo MA, Nurudeen J, Orovwigho U, et al. 2016. Assessment of the health implications of synthetic and natural food colourants–A critical review. Pharmaceutical and Biosciences Journal 4:1−11

doi: 10.20510/ukjpb/4/i4/110639
[6]

Bakthavachalu P, Kannan SM, Qoronfleh MW. 2020. Food color and autism: a meta-analysis. In Personalized Food Intervention and Therapy for Autism Spectrum Disorder Management. Advances in Neurobiology, eds. Essa M, Qoronfleh M. vol 24. Netherlands: Springer, Cham. pp. 481−504. https://doi.org/10.1007/978-3-030-30402-7_15

[7]

Koklesova L, Liskova A, Samec M, Buhrmann C, Samuel SM, et al. 2020. Carotenoids in cancer apoptosis—the road from bench to bedside and back. Cancers 12:2425

doi: 10.3390/cancers12092425
[8]

Shokri-mashhadi N, Tahmasebi M, Mohammadi-asl J, Zakerkish M, Mohammadshahi M. 2021. The antioxidant and anti-inflammatory effects of astaxanthin supplementation on the expression of miR-146a and miR-126 in patients with type 2 diabetes mellitus: a randomised, double-blind, placebo-controlled clinical trial. International Journal of Clinical Practice 75:e14022

doi: 10.1111/ijcp.14022
[9]

Tierney AC, Rumble CE, Billings LM, George ES. 2020. Effect of dietary and supplemental lycopene on cardiovascular risk factors: a systematic review and meta-analysis. Advances in Nutrition 11:1453−88

doi: 10.1093/advances/nmaa069
[10]

Silva MM, Reboredo FH, Lidon FC. 2022. Food colour additives: a synoptical overview on their chemical properties, applications in food products, and health side effects. Foods 11:379

doi: 10.3390/foods11030379
[11]

Khan MI. 2016. Stabilization of betalains: a review. Food Chemistry 197:1280−85

doi: 10.1016/j.foodchem.2015.11.043
[12]

Xu X, Meng X, Li S, Gan R, Li Y, et al. 2018. Bioactivity, health benefits, and related molecular mechanisms of curcumin: current progress, challenges, and perspectives. Nutrients 10:1553

doi: 10.3390/nu10101553
[13]

Qin Y, Liu Y, Zhang X, Liu J. 2020. Development of active and intelligent packaging by incorporating betalains from red pitaya (Hylocereus polyrhizus) peel into starch/polyvinyl alcohol films. Food Hydrocolloids 100:105410

doi: 10.1016/j.foodhyd.2019.105410
[14]

Rodríguez-Mena A, Ochoa-Martínez LA, González-Herrera SM, Rutiaga-Quiñones OM, González-Laredo RF, et al. 2023. Natural pigments of plant origin: Classification, extraction and application in foods. Food Chemistry 398:133908

doi: 10.1016/j.foodchem.2022.133908
[15]

Rodriguez-Amaya DB. 2019. Update on natural food pigments - A mini-review on carotenoids, anthocyanins, and betalains. Food Research International 124:200−5

doi: 10.1016/j.foodres.2018.05.028
[16]

Chen Y, Wang Z, Zhang H, Liu Y, Zhang S, et al. 2018. Isolation of high purity anthocyanin monomers from red cabbage with recycling preparative liquid chromatography and their photostability. Molecules 23:991

doi: 10.3390/molecules23050991
[17]

Cortez R, Luna-Vital DA, Margulis D, Gonzalez de Mejia E. 2017. Natural pigments: stabilization methods of anthocyanins for food applications. Comprehensive Reviews in Food Science and Food Safety 16:180−98

doi: 10.1111/1541-4337.12244
[18]

Li Y. 2019. Effects of different metal ions on the stability of anthocyanins as indicators. IOP Conference Series: Earth and Environmental Science 300:052015

doi: 10.1088/1755-1315/300/5/052015
[19]

Wybraniec S, Starzak K, Skopińska A, Szaleniec M, Słupski J, et al. 2013. Effects of metal cations on betanin stability in aqueous-organic solutions. Food Science and Biotechnology 22:353−63

doi: 10.1007/s10068-013-0088-7
[20]

Enaru B, Drencanu G, Pop TD, Stǎnilǎ A, Diaconeasa Z. 2021. Anthocyanins: factors affecting their stability and degradation. Antioxidants 10:1967

doi: 10.3390/antiox10121967
[21]

Kayn N, Atalay D, Türken Akçay T, Erge HS. 2019. Color stability and change in bioactive compounds of red beet juice concentrate stored at different temperatures. Journal of Food Science and Technology 56:5097−106

doi: 10.1007/s13197-019-03982-5
[22]

Guo Q, Zhang Z, Dadmohammadi Y, Li Y, Abbaspourrad A. 2021. Synergistic effects of ascorbic acid, low methoxy pectin, and EDTA on stabilizing the natural red colors in acidified beverages. Current Research in Food Science 4:873−81

doi: 10.1016/j.crfs.2021.11.005
[23]

Kim J, Choi SJ. 2020. Improving the stability of lycopene from chemical degradation in model beverage emulsions: impact of hydrophilic group size of emulsifier and antioxidant polarity. Foods 9:971

doi: 10.3390/foods9080971
[24]

Khan MI, Giridhar P. 2014. Enhanced chemical stability, chromatic properties and regeneration of betalains in Rivina humilis L. berry juice. LWT - Food Science and Technology 58:649−57

doi: 10.1016/j.lwt.2014.03.027
[25]

Bakowska-Barczak AM. 2005. Acylated anthocyanins as stable, natural food colorants - a review. Polish Journal of Food and Nutrition Sciences 14:107−116

[26]

Cai D, Li X, Chen J, Jiang X, Ma X, et al. 2022. A comprehensive review on innovative and advanced stabilization approaches of anthocyanin by modifying structure and controlling environmental factors. Food Chemistry 366:130611

doi: 10.1016/j.foodchem.2021.130611
[27]

Choi I, Choi H, Lee JS, Han J. 2023. Novel color stability and colorimetry-enhanced intelligent CO2 indicators by metal complexation of anthocyanins for monitoring chicken freshness. Food Chemistry 404:134534

doi: 10.1016/j.foodchem.2022.134534
[28]

Buchweitz M, Carle R, Kammerer DR. 2012. Bathochromic and stabilising effects of sugar beet pectin and an isolated pectic fraction on anthocyanins exhibiting pyrogallol and catechol moieties. Food Chemistry 135:3010−19

doi: 10.1016/j.foodchem.2012.06.101
[29]

Sarma AD, Sreelakshmi Y, Sharma R. 1997. Antioxidant ability of anthocyanins against ascorbic acid oxidation. Phytochemistry 45:671−74

doi: 10.1016/s0031-9422(97)00057-5
[30]

Buchweitz M, Nagel A, Carle R, Kammerer DR. 2012. Characterisation of sugar beet pectin fractions providing enhanced stability of anthocyanin-based natural blue food colourants. Food Chemistry 132:1971−79

doi: 10.1016/j.foodchem.2011.12.034
[31]

Tachibana N, Kimura Y, Ohno T. 2014. Examination of molecular mechanism for the enhanced thermal stability of anthocyanins by metal cations and polysaccharides. Food Chemistry 143:452−58

doi: 10.1016/j.foodchem.2013.08.017
[32]

Luna-Vital D, Cortez R, Ongkowijoyo P, Gonzalez de Mejia E. 2018. Protection of color and chemical degradation of anthocyanin from purple corn (Zea mays L.) by zinc ions and alginate through chemical interaction in a beverage model. Food Research International 105:169−77

doi: 10.1016/j.foodres.2017.11.009
[33]

Castro-Enríquez DD, Montaño-Leyva B, Toro-Sánchez CL, Juaréz-Onofre JE, Carvajal-Millan E, et al. 2020. Stabilization of betalains by encapsulation—a review. Journal of Food Science and Technology 57:1587−600

doi: 10.1007/s13197-019-04120-x
[34]

Xu D, Wang X, Jiang J, Yuan F, Decker EA, et al. 2013. Influence of pH, EDTA, α-tocopherol, and WPI oxidation on the degradation of β-carotene in WPI-stabilized oil-in-water emulsions. LWT - Food Science and Technology 54:236−41

doi: 10.1016/j.lwt.2013.05.029
[35]

Herbach KM, Rohe M, Stintzing FC, Carle R. 2006. Structural and chromatic stability of purple pitaya (Hylocereus polyrhizus [Weber] Britton & Rose) betacyanins as affected by the juice matrix and selected additives. Food Research International 39:667−77

doi: 10.1016/j.foodres.2006.01.004
[36]

Zhou Q, Yang L, Xu J, Qiao X, Li Z, et al. 2018. Evaluation of the physicochemical stability and digestibility of microencapsulated esterified astaxanthins using in vitro and in vivo models. Food Chemistry 260:73−81

doi: 10.1016/j.foodchem.2018.03.046
[37]

Gharibzahedi SMT, Jafari SM. 2017. Nanoencapsulation of minerals. In Nanoencapsulation of Food Bioactive Ingredients, ed. Jafari SM. Iran: Academic Press. pp. 333−400. https://doi.org/10.1016/B978-0-12-809740-3.00009-X

[38]

Zhao X, Liu H, Zhang X, Zhang G, Zhu H. 2019. Astaxanthin from Haematococcus pluvialis microencapsulated by spray drying: characterization and antioxidant activity. Journal of the American Oil Chemists and Society 96:93−102

doi: 10.1002/aocs.12170
[39]

Busch VM, Pereyra-Gonzalez A, Šegatin N, Santagapita PR, Poklar Ulrih N, et al. 2017. Propolis encapsulation by spray drying: Characterization and stability. LWT 75:227−35

doi: 10.1016/j.lwt.2016.08.055
[40]

Drozińska E, Kanclerz A, Kurek MA. 2019. Microencapsulation of sea buckthorn oil with β-glucan from barley as coating material. International Journal of Biological Macromolecules 131:1014−20

doi: 10.1016/j.ijbiomac.2019.03.150
[41]

Neagu C, Mihalcea L, Enachi E, Barbu V, Borda D, et al. 2020. Cross-linked microencapsulation of CO2 supercritical extracted oleoresins from sea buckthorn: evidence of targeted functionality and stability. Molecules 25:2442

doi: 10.3390/molecules25102442
[42]

Luiza Koop B, Nascimento da Silva M, Diniz da Silva F, Thayres dos Santos Lima K, Santos Soares L, et al. 2022. Flavonoids, anthocyanins, betalains, curcumin, and carotenoids:Sources, classification and enhanced stabilization by encapsulation and adsorption. Food Research International 153:110929

doi: 10.1016/j.foodres.2021.110929
[43]

Ozkan G, Franco P, de Marco I, Xiao J, Capanoglu E. 2019. A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chemistry 272:494−506

doi: 10.1016/j.foodchem.2018.07.205
[44]

Gharibzahedi SMT, Smith B. 2021. Legume proteins are smart carriers to encapsulate hydrophilic and hydrophobic bioactive compounds and probiotic bacteria: a review. Comprehensive Reviews in Food Science and Food Safety 20:1250−79

doi: 10.1111/1541-4337.12699
[45]

Santos PDF, Rubio FTV, da Silva MP, Pinho LS, Favaro-Trindade CS. 2021. Microencapsulation of carotenoid-rich materials: a review. Food Research International 147:110571

doi: 10.1016/j.foodres.2021.110571
[46]

Baldin JC, Michelin EC, Polizer YJ, Rodrigues I, de Godoy SHS, et al. 2016. Microencapsulated jabuticaba (Myrciaria cauliflora) extract added to fresh sausage as natural dye with antioxidant and antimicrobial activity. Meat Science 118:15−21

doi: 10.1016/j.meatsci.2016.03.016
[47]

Otálora MC, Carriazo JG, Iturriaga L, Nazareno MA, Osorio C. 2015. Microencapsulation of betalains obtained from Cactus fruit (Opuntia ficus-indica) by spray drying using Cactus cladode mucilage and maltodextrin as encapsulating agents. Food Chemistry 187:174−81

doi: 10.1016/j.foodchem.2015.04.090
[48]

Zhang H, Zhu L, Shao Y, Wang L, He J, et al. 2023. Microencapsulation of Monascus red pigments by emulsification/internal gelation with freeze/spray-drying: process optimization, morphological characteristics, and stability. LWT 173:114227

doi: 10.1016/j.lwt.2022.114227
[49]

Álvarez-Henao MV, Saavedra N, Medina S, Jiménez Cartagena C, Alzate LM, et al. 2018. Microencapsulation of lutein by spray-drying: Characterization and stability analyses to promote its use as a functional ingredient. Food Chemistry 256:181−87

doi: 10.1016/j.foodchem.2018.02.059
[50]

Pal S, Bhattacharjee P. 2018. Spray dried powder of lutein-rich supercritical carbon dioxide extract of gamma-irradiated marigold flowers: process optimization, characterization and food application. Powder Technology 327:512−23

doi: 10.1016/j.powtec.2017.12.085
[51]

Carmo ELD, Teodoro RAR, Félix PHC, Fernandes RVB, Oliveira ÉR, et al. 2018. Stability of spray-dried beetroot extract using oligosaccharides and whey proteins. Food Chemistry 249:51−59

doi: 10.1016/j.foodchem.2017.12.076
[52]

Esquivel-González BE, Medina-Torres L, Ochoa-Martínez LA, Rutiaga-Quiñones OM, Rocha-Guzmán NE, et al. 2022. Microencapsulation of betanins by spray drying with mixtures of sweet potato starch and maltodextrin as wall materials to prepare natural pigments delivery systems. Journal of Food Processing and Preservation 46:e16431

doi: 10.1111/jfpp.16431
[53]

Wang Y, Lu Z, Lv F, Bie X. 2009. Study on microencapsulation of curcumin pigments by spray drying. European Food Research and Technology 229:391−96

doi: 10.1007/s00217-009-1064-6
[54]

Laokuldilok T, Kanha N. 2015. Effects of processing conditions on powder properties of black glutinous rice (Oryza sativa L.) bran anthocyanins produced by spray drying and freeze drying. LWT - Food Science and Technology 64:405−11

doi: 10.1016/j.lwt.2015.05.015
[55]

Ravichandran K, Palaniraj R, Saw NMMT, Gabr AMM, Ahmed AR, et al. 2014. Effects of different encapsulation agents and drying process on stability of betalains extract. Journal of Food Science and Technology 51:2216−21

doi: 10.1007/s13197-012-0728-6
[56]

Mansour M, Salah M, Xu X. 2020. Effect of microencapsulation using soy protein isolate and gum Arabic as wall material on red raspberry anthocyanin stability, characterization, and simulated gastrointestinal conditions. Ultrasonics Sonochemistry 63:104927

doi: 10.1016/j.ultsonch.2019.104927
[57]

Volić M, Pećinar I, Micić D, Đorđević V, Pešić R, et al. 2022. Design and characterization of whey protein nanocarriers for thyme essential oil encapsulation obtained by freeze-drying. Food Chemistry 386:132749

doi: 10.1016/j.foodchem.2022.132749
[58]

Otálora MC, Carriazo JG, Iturriaga L, Osorio C, Nazareno MA. 2016. Encapsulating betalains from Opuntia ficus-indica fruits by ionic gelation: Pigment chemical stability during storage of beads. Food Chemistry 202:373−82

doi: 10.1016/j.foodchem.2016.01.115
[59]

Ferreira DS, Faria AF, Grosso CRF, Mercadante AZ. 2009. Encapsulation of blackberry anthocyanins by thermal gelation of curdlan. Journal of the Brazilian Chemical Society 20:1908−15

doi: 10.1590/s0103-50532009001000020
[60]

Liu Q, Cai W, Zhen T, Ji N, Dai L, et al. 2020. Preparation of debranched starch nanoparticles by ionic gelation for encapsulation of epigallocatechin gallate. International Journal of Biological Macromolecules 161:481−91

doi: 10.1016/j.ijbiomac.2020.06.070
[61]

Gomez-Estaca J, Comunian TA, Montero P, Favaro-Trindade CS. 2018. Physico-chemical properties, stability, and potential food applications of shrimp lipid extract encapsulated by complex coacervation. Food and Bioprocess Technology 11:1596−604

doi: 10.1007/s11947-018-2116-3
[62]

Shaddel R, Hesari J, Azadmard-Damirchi S, Hamishehkar H, Fathi-Achachlouei B, et al. 2018. Use of gelatin and gum Arabic for encapsulation of black raspberry anthocyanins by complex coacervation. International Journal of Biological Macromolecules 107:1800−10

doi: 10.1016/j.ijbiomac.2017.10.044
[63]

Ursache FM, Andronoiu DG, Ghinea IO, Barbu V, Ioniţă E, et al. 2018. Valorizations of carotenoids from sea buckthorn extract by microencapsulation and formulation of value-added food products. Journal of Food Engineering 219:16−24

doi: 10.1016/j.jfoodeng.2017.09.015
[64]

Raj GVSB, Dash KK. 2022. Microencapsulation of betacyanin from dragon fruit peel by complex coacervation: Physicochemical characteristics, thermal stability, and release profile of microcapsules. Food Bioscience 49:101882

doi: 10.1016/j.fbio.2022.101882
[65]

Tomé Constantino AB, Garcia-Rojas EE. 2022. Microencapsulation of betanin by complex coacervation of carboxymethylcellulose and amaranth protein isolate for application in edible gelatin films. Food Hydrocolloids 133:107956

doi: 10.1016/j.foodhyd.2022.107956
[66]

Liu G, Hu M, Zhao Z, Lin Q, Wei D, et al. 2019. Enhancing the stability of astaxanthin by encapsulation in poly (l-lactic acid) microspheres using a supercritical anti-solvent process. Particuology 44:54−62

doi: 10.1016/j.partic.2018.04.006
[67]

Machado FRS, Reis DF, Boschetto DL, Burkert JFM, Ferreira SRS, et al. 2014. Encapsulation of astaxanthin from Haematococcus pluvialis in PHBV by means of SEDS technique using supercritical CO2. Industrial Crops and Products 54:17−21

doi: 10.1016/j.indcrop.2014.01.007
[68]

Xia F, Hu D, Jin H, Zhao Y, Liang J. 2012. Preparation of lutein proliposomes by supercritical anti-solvent technique. Food Hydrocolloids 26:456−63

doi: 10.1016/j.foodhyd.2010.11.014
[69]

Chen H, Xu B, Zhou C, Yagoub AEGA, Cai Z, et al. 2022. Multi-frequency ultrasound-assisted dialysis modulates the self-assembly of alcohol-free zein-sodium caseinate to encapsulate curcumin and fabricate composite nanoparticles. Food Hydrocolloids 122:107110

doi: 10.1016/j.foodhyd.2021.107110
[70]

Li X, Zhang ZH, Qiao J, Qu W, Wang MS, et al. 2022. Improvement of betalains stability extracted from red dragon fruit peel by ultrasound-assisted microencapsulation with maltodextrin. Ultrasonics Sonochemistry 82:105897

doi: 10.1016/j.ultsonch.2021.105897
[71]

Liu Y, Liang Q, Liu X, Raza H, Ma H, et al. 2022. Treatment with ultrasound improves the encapsulation efficiency of resveratrol in zein-gum Arabic complex coacervates. LWT 153:112331

doi: 10.1016/j.lwt.2021.112331
[72]

Zhao W, Su L, Yu Z, Li J. 2022. Improved stability and controlled release of lycopene via self-assembled nanomicelles encapsulation. LWT 155:112878

doi: 10.1016/j.lwt.2021.112878
[73]

Zhi K, Yang H, Shan Z, Huang K, Zhang M, et al. 2021. Dual-modified starch nanospheres encapsulated with curcumin by self-assembly: Structure, physicochemical properties and anti-inflammatory activity. International Journal of Biological Macromolecules 191:305−14

doi: 10.1016/j.ijbiomac.2021.09.117
[74]

Wang Y, Jiang W, Jiang Y, Julian McClements D, Liu F, et al. 2022. Self-assembled nano-micelles of lactoferrin peptides: Structure, physicochemical properties, and application for encapsulating and delivering curcumin. Food Chemistry 387:132790

doi: 10.1016/j.foodchem.2022.132790
[75]

Hu G, Batool Z, Cai Z, Liu Y, Ma M, et al. 2021. Production of self-assembling acylated ovalbumin nanogels as stable delivery vehicles for curcumin. Food Chemistry 355:129635

doi: 10.1016/j.foodchem.2021.129635
[76]

Lan M, Fu Y, Dai H, Ma L, Yu Y, et al. 2020. Encapsulation of β-carotene by self-assembly of rapeseed meal-derived peptides: Factor optimization and structural characterization. LWT 138:110456

doi: 10.1016/j.lwt.2020.110456
[77]

Liu X, Wang P, Zou YX, Luo Z, Tamer TM. 2020. Co-encapsulation of Vitamin C and β-Carotene in liposomes: storage stability, antioxidant activity, andin vitro gastrointestinal digestion. Food Research International 136:109587

doi: 10.1016/j.foodres.2020.109587
[78]

Moraes M, Carvalho JMP, Silva CR, Cho S, Sola MR, et al. 2013. Liposomes encapsulating beta-carotene produced by the proliposomes method: characterisation and shelf life of powders and phospholipid vesicles. International Journal of Food Science & Technology 48:274−82

doi: 10.1111/j.1365-2621.2012.03184.x
[79]

Chen W, Zou M, Ma X, Lv R, Ding T, et al. 2019. Co-encapsulation of EGCG and quercetin in liposomes for optimum antioxidant activity. Journal of Food Science 84:111−20

doi: 10.1111/1750-3841.14405
[80]

Sravan Kumar S, Singh Chauhan A, Giridhar P. 2020. Nanoliposomal encapsulation mediated enhancement of betalain stability: Characterisation, storage stability and antioxidant activity of Basella rubra L. fruits for its applications in vegan gummy candies. Food Chemistry 333:127442

doi: 10.1016/j.foodchem.2020.127442
[81]

Ersus S, Yurdagel U. 2007. Microencapsulation of anthocyanin pigments of black carrot (Daucus carota L.) by spray drier. Journal of Food Engineering 80:805−12

doi: 10.1016/j.jfoodeng.2006.07.009
[82]

Cai YZ, Corke H. 2000. Production and properties of spray-dried Amaranthus betacyanin pigments. Journal of Food Science 65:1248−52

doi: 10.1111/j.1365-2621.2000.tb10273.x
[83]

Sagar VR, Suresh Kumar P. 2010. Recent advances in drying and dehydration of fruits and vegetables: a review. Journal of Food Science and Technology 47:15−26

doi: 10.1007/s13197-010-0010-8
[84]

Sánchez F D, López E M S, Kerstupp S F, Ibarra R V, Scheinvar L. 2006. Colorant extract from red prickly pear (Opuntia Lasiacantha) for food application. Electronic Journal of Environmental Agricultural & Food Chemistry 5(2):1330−37

[85]

Timilsena YP, Akanbi TO, Khalid N, Adhikari B, Barrow CJ. 2019. Complex coacervation: Principles, mechanisms and applications in microencapsulation. International Journal of Biological Macromolecules 121:1276−86

doi: 10.1016/j.ijbiomac.2018.10.144
[86]

Reineccius G. 2019. Use of proteins for the delivery of flavours and other bioactive compounds. Food Hydrocolloids 86:62−69

doi: 10.1016/j.foodhyd.2018.01.039
[87]

Tang Y, Scher HB, Jeoh T. 2020. Industrially scalable complex coacervation process to microencapsulate food ingredients. Innovative Food Science & Emerging Technologies 59:102257

doi: 10.1016/j.ifset.2019.102257
[88]

Lazko J, Popineau Y, Legrand J. 2004. Soy glycinin microcapsules by simple coacervation method. Colloids and Surfaces B: Biointerfaces 37:1−8

doi: 10.1016/j.colsurfb.2004.06.004
[89]

Hsieh WC, Chang CP, Gao Y. 2006. Controlled release properties of Chitosan encapsulated volatile Citronella Oil microcapsules by thermal treatments. Colloids and Surfaces B: Biointerfaces 53:209−14

doi: 10.1016/j.colsurfb.2006.09.008
[90]

Deladino L, Anbinder PS, Navarro AS, Martino MN. 2008. Encapsulation of natural antioxidants extracted from Ilex paraguariensis. Carbohydrate Polymers 71:126−34

doi: 10.1016/j.carbpol.2007.05.030
[91]

Xie H, Xiang C, Li Y, Wang L, Zhang Y, et al. 2019. Fabrication of ovalbumin/κ-carrageenan complex nanoparticles as a novel carrier for curcumin delivery. Food Hydrocolloids 89:111−21

doi: 10.1016/j.foodhyd.2018.10.027
[92]

Brito de Souza V, Thomazini M, Chaves IE, Ferro-Furtado R, Favaro-Trindade CS. 2020. Microencapsulation by complex coacervation as a tool to protect bioactive compounds and to reduce astringency and strong flavor of vegetable extracts. Food Hydrocolloids 98:105244

doi: 10.1016/j.foodhyd.2019.105244
[93]

Cui H, Siva S, Lin L. 2019. Ultrasound processed cuminaldehyde/2-hydroxypropyl-β-cyclodextrin inclusion complex: Preparation, characterization and antibacterial activity. Ultrasonics Sonochemistry 56:84−93

doi: 10.1016/j.ultsonch.2019.04.001
[94]

Cocero MJ, Martín Á, Mattea F, Varona S. 2009. Encapsulation and co-precipitation processes with supercritical fluids: Fundamentals and applications. The Journal of Supercritical Fluids 47:546−55

doi: 10.1016/j.supflu.2008.08.015
[95]

Bravi M, Spinoglio F, Verdone N, Adami M, Aliboni A, et al. 2007. Improving the extraction of α-tocopherol-enriched oil from grape seeds by supercritical CO2. Optimisation of the extraction conditions. Journal of Food Engineering 78:488−93

doi: 10.1016/j.jfoodeng.2005.10.017
[96]

Priamo WL, de Cezaro AM, Ferreira SRS, Oliveira JV. 2010. Precipitation and encapsulation of β-carotene in PHBV using carbon dioxide as anti-solvent. The Journal of Supercritical Fluids 54:103−9

doi: 10.1016/j.supflu.2010.02.013
[97]

Miao H, Chen Z, Xu W, Wang W, Song Y, et al. 2018. Preparation and characterization of naringenin microparticles via a supercritical anti-solvent process. The Journal of Supercritical Fluids 131:19−25

doi: 10.1016/j.supflu.2017.08.013
[98]

Hasan M, Belhaj N, Benachour H, Barberi-Heyob M, Kahn CJF, et al. 2014. Liposome encapsulation of curcumin: physico-chemical characterizations and effects on MCF7 cancer cell proliferation. International Journal of Pharmaceutics 461:519−28

doi: 10.1016/j.ijpharm.2013.12.007
[99]

Vieira Teixeira da Silva D, dos Santos Baião D, de Oliveira Silva F, Alves G, Perrone D, et al. 2019. Betanin, a natural food additive:stability, bioavailability, antioxidant and preservative ability assessments. Molecules 24:458

doi: 10.3390/molecules24030458
[100]

Bellucci ERB, Munekata PES, Pateiro M, Lorenzo JM, da Silva Barretto AC. 2021. Red pitaya extract as natural antioxidant in pork patties with total replacement of animal fat. Meat Science 171:108284

doi: 10.1016/j.meatsci.2020.108284
[101]

Sucu C, Turp GY. 2018. The investigation of the use of beetroot powder in Turkish fermented beef sausage (sucuk) as nitrite alternative. Meat Science 140:158−66

doi: 10.1016/j.meatsci.2018.03.012
[102]

Aykın-Dinçer E, Güngör KK, Çağlar E, Erbaş M. 2021. The use of beetroot extract and extract powder in sausages as natural food colorant. International Journal of Food Engineering 17:75−82

doi: 10.1515/ijfe-2019-0052
[103]

Luisa García M, Calvo MM, Dolores Selgas M. 2009. Beef hamburgers enriched in lycopene using dry tomato peel as an ingredient. Meat Science 83:45−49

doi: 10.1016/j.meatsci.2009.03.009
[104]

Botella-Martínez C, Viuda-Martos M, Fernández-López J, Pérez-Álvarez J, Fernández-López J. 2022. Development of plant-based Burgers using gelled emulsions as fat source and beetroot juice as colorant: effects on chemical, physicochemical, appearance and sensory characteristics. LWT 172:114193

doi: 10.1016/j.lwt.2022.114193
[105]

Turan E, Şimşek A. 2021. Effects of lyophilized black mulberry water extract on lipid oxidation, metmyoglobin formation, color stability, microbial quality and sensory properties of beef patties stored under aerobic and vacuum packaging conditions. Meat Science 178:108522

doi: 10.1016/j.meatsci.2021.108522
[106]

Dias S, Castanheira EMS, Fortes AG, Pereira DM, Rodrigues ARO, et al. 2020. Application of natural pigments in ordinary cooked ham. Molecules 25:2241

doi: 10.3390/molecules25092241
[107]

Zheng B, Li X, Hao J, Xu D. 2023. Meat systems produced with Monascus pigment water-in-oil-in-water multiple emulsion as pork fat replacers. Food Chemistry 402:134080

doi: 10.1016/j.foodchem.2022.134080