[1]

Chatrou LW, Pirie MD, Erkens RHJ, Couvreur TLP, Neubig KM, et al. 2012. A new subfamilial and tribal classification of the pantropical flowering plant family Annonaceae informed by molecular phylogenetics. Botanical Journal of the Linnean Society 169:5−40

doi: 10.1111/j.1095-8339.2012.01235.x
[2]

Couvreur TLP, Maas PJM, Meinke S, Johnson DM, Keßler PJA. 2012. Keys to the genera of Annonaceae. Botanical Journal of the Linnean Society 169:74−83

doi: 10.1111/j.1095-8339.2012.01230.x
[3]

Guo X, Tang C, Thomas D, Couvreur TLP, Saunders RMK. 2017. A mega-phylogeny of the Annonaceae: taxonomic placement of five enigmatic genera and support for a new tribe, Phoenicantheae. Scientific Reports 7:7323

doi: 10.1038/s41598-017-07252-2
[4]

Larranaga N, Albertazzi FJ, Hormaza JI. 2019. Phylogenetics of Annona cherimola (Annonaceae) and some of its closest relatives. Journal of Systematics and Evolution 57:211−21

doi: 10.1111/jse.12473
[5]

Li P, Thomas DC, Saunders RMK. 2017. Historical biogeography and ecological niche modelling of the Asimina-Disepalum clade (Annonaceae): role of ecological differentiation in Neotropical-Asian disjunctions and diversification in Asia. BMC Evolutionary Biology 17:188

doi: 10.1186/s12862-017-1038-4
[6]

Pirie MD, Doyle JA. 2012. Dating clades with fossils and molecules: the case of Annonaceae. Botanical Journal of the Linnean Society 169:84−116

doi: 10.1111/j.1095-8339.2012.01234.x
[7]

Wu Y, Chang G, Ko F, Teng C. 1995. Bioactive constituents from the stems of Annona montana. Planta Medica 61:146−49

doi: 10.1055/s-2006-958035
[8]

Mootoo BS, Ali A, Khan A, Reynolds WF, McLean S. 2000. Three novel monotetrahydrofuran annonaceous acetogenins from Annona montana. Journal of Natural Products 63:807−11

doi: 10.1021/np9903301
[9]

Vurture GW, Sedlazeck FJ, Nattestad M, Underwood CJ, Fang H, et al. 2017. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 33:2202−4

doi: 10.1093/bioinformatics/btx153
[10]

Chin CS, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, et al. 2016. Phased diploid genome assembly with single-molecule real-time sequencing. Nature Methods 13:1050−54

doi: 10.1038/nmeth.4035
[11]

Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nature Methods 10:563−69

doi: 10.1038/nmeth.2474
[12]

Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, et al. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9:e112963

doi: 10.1371/journal.pone.0112963
[13]

Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210−12

doi: 10.1093/bioinformatics/btv351
[14]

Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, et al. 2005. Repbase Update, a database of eukaryotic repetitive elements. Cytogenetic and Genome Research 110:462−67

doi: 10.1159/000084979
[15]

Price AL, Jones NC, Pevzner PA. 2005. De novo identification of repeat families in large genomes. Bioinformatics 21:i351−i358

doi: 10.1093/bioinformatics/bti1018
[16]

Benson G. 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research 27:573−80

doi: 10.1093/nar/27.2.573
[17]

Slater GSC, Birney E. 2005. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6:31

doi: 10.1186/1471-2105-6-31
[18]

Stanke M, Keller O, Gunduz I, Hayes A, Waack S, et al. 2006. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Research 34:W435−W439

doi: 10.1093/nar/gkl200
[19]

Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O’Donnell CJ, et al. 2008. SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 24:2938−39

doi: 10.1093/bioinformatics/btn564
[20]

Holt C, Yandell M. 2011. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics 12:491

doi: 10.1186/1471-2105-12-491
[21]

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. Journal of Molecular Biology 215:403−10

doi: 10.1016/S0022-2836(05)80360-2
[22]

Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, et al. 2003. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Research 31:365−70

doi: 10.1093/nar/gkg095
[23]

Kanehisa M, Susumu G. 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research 28:3316−32

doi: 10.1093/nar/28.1.27
[24]

Jones P, Binns D, Chang HY, Fraser M, Li W, et al. 2014. InterProScan 5: Genome-scale protein function classification. Bioinformatics 30:1236−40

doi: 10.1093/bioinformatics/btu031
[25]

Koonin EV, Fedorova ND, Jackson JD, Jacobs AR, Krylov DM, et al. 2004. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biology 5:R7

doi: 10.1186/gb-2004-5-2-r7
[26]

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. 2000. Gene Ontology: tool for the unification of biology. Nature Genetics 25:25−29

doi: 10.1038/75556
[27]

Lowe TM, Eddy SR. 1997. TRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research 25:955−64

doi: 10.1093/nar/25.5.955
[28]

Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, et al. 2005. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Research 33:D121−D124

doi: 10.1093/nar/gki081
[29]

Nawrocki EP, Kolbe DL, Eddy SR. 2009. Infernal 1.0: inference of RNA alignments. Bioinformatics 25:1335−37

doi: 10.1093/bioinformatics/btp157
[30]

Li L, Stoeckert CJ Jr, Roos DS. 2003. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Research 13:2178−89

doi: 10.1101/gr.1224503
[31]

De Bie T, Cristianini N, Demuth JP, Hahn MW. 2006. CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22:1269−71

doi: 10.1093/bioinformatics/btl097
[32]

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32:1792−97

doi: 10.1093/nar/gkh340
[33]

Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24:1586−91

doi: 10.1093/molbev/msm088
[34]

Zhang G, Liu K, Li Z, Lohaus R, Hsiao YY, et al. 2017. The Apostasia genome and the evolution of orchids. Nature 549:379−83

doi: 10.1038/nature23897
[35]

Blanc G, Wolfe KH. 2004. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. The Plant Cell 16:1667−78

doi: 10.1105/tpc.021345
[36]

Wang K, Wang Z, Li F, Ye W, Wang J, et al. 2012. The draft genome of a diploid cotton Gossypium raimondii. Nature Genetics 44:1098−103

doi: 10.1038/ng.2371
[37]

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28:2731−39

doi: 10.1093/molbev/msr121
[38]

Chen J, Hao Z, Guang X, Zhao C, Wang P, et al. 2019. Liriodendron genome sheds light on angiosperm phylogeny and species–pair differentiation. Nature Plants 5:18−25

doi: 10.1038/s41477-018-0323-6
[39]

Chen S, Sun W, Xiong Y, Jiang YT, Liu X, et al. 2020. The Phoebe genome sheds light on the evolution of magnoliids. Horticulture Research 7:146

doi: 10.1038/s41438-020-00368-z
[40]

Chaw SM, Liu YC, Wu YW, Wang HY, Lin CYI, et al. 2019. Stout camphor tree genome fills gaps in understanding of flowering plant genome evolution. Nature Plants 5:63−73

doi: 10.1038/s41477-018-0337-0
[41]

Chen Y, Li Z, Zhao Y, Gao M, Wang J, et al. 2020. The Litsea genome and the evolution of the laurel family. Nature Communications 11:1675

doi: 10.1038/s41467-020-15493-5
[42]

Strijk JS, Hinsinger DD, Roeder MM, Chatrou LW, Couvreur TLP, et al. 2021. Chromosome-level reference genome of the soursop (Annona muricata): a new resource for Magnoliid research and tropical pomology. Molecular Ecology Resources 21:1608−19

doi: 10.1111/1755-0998.13353
[43]

Massoni J, Couvreur TLP, Sauquet H. 2015. Five major shifts of diversification through the long evolutionary history of Magnoliidae (angiosperms). BMC Evolutionary Biology 15:49

doi: 10.1186/s12862-015-0320-6
[44]

Soltis DE, Soltis PS. 2019. Nuclear genomes of two magnoliids. Nature Plants 5:6−7

doi: 10.1038/s41477-018-0344-1
[45]

Bai G, Yang D, Cao P, Yao H, Zhang Y, et al. 2019. Genome-wide identification, gene structure and expression analysis of the MADS-box gene family indicate their function in the development of tobacco (Nicotiana tabacum L.). International Journal of Molecular Sciences 20:5043

doi: 10.3390/ijms20205043
[46]

Colombo M, Masiero S, Vanzulli S, Lardelli P, Kater MM, et al. 2008. AGL23, a type I MADS-box gene that controls female gametophyte and embryo development in Arabidopsis. The Plant Journal 54:1037−48

doi: 10.1111/j.1365-313X.2008.03485.x
[47]

Portereiko MF, Lloyd A, Steffen JG, Punwani JA, Otsuga D, et al. 2006. AGL80 is required for central cell and endosperm development in Arabidopsis. The Plant Cell 18:1862−72

doi: 10.1105/tpc.106.040824
[48]

Steffen JG, Kang IH, Portereiko MF, Lloyd A, Drews GN. 2008. AGL61 interacts with AGL80 and is required for central cell development in Arabidopsis. Plant Physiology 148:259−68

doi: 10.1104/pp.108.119404
[49]

Adamczyk BJ, Fernandez DE. 2009. MIKC* MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis. Plant Physiology 149:1713−23

doi: 10.1104/pp.109.135806
[50]

Liu Y, Cui S, Wu F, Yan S, Lin X, et al. 2013. Functional conservation of MIKC*-type MADS box genes in Arabidopsis and rice pollen maturation. The Plant Cell 25:1288−303

doi: 10.1105/tpc.113.110049
[51]

Hu L, Liu S. 2012. Genome-wide analysis of the MADS-box gene family in cucumber. Genome 55:245−56

doi: 10.1139/g2012-009
[52]

Arora R, Agarwal P, Ray S, Singh AK, Singh VP, et al. 2007. MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8:242

doi: 10.1186/1471-2164-8-242
[53]

Guo S, Zhang J, Sun H, Salse J, Lucas WJ, et al. 2013. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nature Genetics 45:51−58

doi: 10.1038/ng.2470
[54]

Vrebalov J, Pan IL, Arroyo AJM, McQuinn R, Chung M, et al. 2009. Fleshy fruit expansion and ripening are regulated by the tomato SHATTERPROOF gene TAGL1. The Plant Cell 21:3041−62

doi: 10.1105/tpc.109.066936
[55]

Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, et al. 2002. A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 296:343−46

doi: 10.1126/science.1068181
[56]

Li M, Feng F, Cheng L. 2012. Expression patterns of genes involved in sugar metabolism and accumulation during apple fruit development. PLoS ONE 7:e33055

doi: 10.1371/journal.pone.0033055
[57]

Tymowska-Lalanne Z, Kreis M. 1998. Expression of the Arabidopsis thaliana invertase gene family. Planta 207:259−65

doi: 10.1007/s004250050481
[58]

Baud S, Vaultier MN, Rochat C. 2004. Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. Journal of Experimental Botany 55:397−409

doi: 10.1093/jxb/erh047
[59]

Zhang C, Yu M, Ma R, Shen Z, Zhang B, Korir NK. 2015. Structure, expression profile, and evolution of the sucrose synthase gene family in peach (Prunus persica). Acta Physiologiae Plantarum 37:81

doi: 10.1007/s11738-015-1829-4
[60]

Lutfiyya LL, Xu N, D’Ordine RL, Morrell JA, Miller PW, et al. 2007. Phylogenetic and expression analysis of sucrose phosphate synthase isozymes in plants. Journal of Plant Physiology 164:923−33

doi: 10.1016/j.jplph.2006.04.014
[61]

Castleden CK, Aoki N, Gillespie VJ, MacRae EA, Quick WP, et al. 2004. Evolution and function of the sucrose-phosphate synthase gene families in wheat and other grasses. Plant Physiology 135:1753−64

doi: 10.1104/pp.104.042457
[62]

Sun J, Zhang J, Larue CT, Huber SC. 2011. Decrease in leaf sucrose synthesis leads to increased leaf starch turnover and decreased RuBP regeneration-limited photosynthesis but not Rubisco-limited photosynthesis in Arabidopsis null mutants of SPSA1. Plant, Cell & Environment 34:592−604

doi: 10.1111/j.1365-3040.2010.02265.x
[63]

Karve A, Rauh BL, Xia X, Kandasamy M, Meagher RB, et al. 2008. Expression and evolutionary features of the hexokinase gene family in Arabidopsis. Planta 228:411−25

doi: 10.1007/s00425-008-0746-9
[64]

Granot D. 2007. Role of tomato hexose kinases. Functional Plant Biology 34:564−70

doi: 10.1071/FP06207
[65]

Chen LQ, Qu X, Hou BH, Sosso D, Osorio S, et al. 2012. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335:207−11

doi: 10.1126/science.1213351
[66]

Chen HY, Huh JH, Yu YC, Ho LH, Chen LQ, et al. 2015. The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection. The Plant Journal 83:1046−58

doi: 10.1111/tpj.12948
[67]

Chardon F, Bedu M, Calenge F, Klemens PAW, Spinner L, et al. 2013. Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis. Current Biology 23:697−702

doi: 10.1016/j.cub.2013.03.021
[68]

Klemens PAW, Patzke K, Deitmer J, Spinner L, Le Hir R, et al. 2013. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis. Plant Physiology 163:1338−52

doi: 10.1104/pp.113.224972
[69]

Braun DM, Slewinski TL. 2009. Genetic control of carbon partitioning in grasses: roles of Sucrose transporters and Tie-dyed loci in phloem loading. Plant Physiology 149:71−81

doi: 10.1104/pp.108.129049
[70]

Wormit A, Trentmann O, Feifer I, Lohr C, Tjaden J, et al. 2006. Molecular identification and physiological characterization of a novel monosaccharide transporter from Arabidopsis involved in vacuolar sugar transport. The Plant Cell 18:3476−90

doi: 10.1105/tpc.106.047290
[71]

Truernit E, Schmid J, Epple P, Illig J, Sauer N. 1996. The sink-specific and stress-regulated Arabidopsis STP4 gene: enhanced expression of a gene encoding a monosaccharide transporter by wounding, elicitors, and pathogen challenge. The Plant Cell 8:2169−82

doi: 10.1105/tpc.8.12.2169
[72]

Aluri S, Büttner M. 2007. Identification and functional expression of the Arabidopsis thaliana vacuolar glucose transporter 1 and its role in seed germination and flowering. Proceedings of the National Academy of Sciences of the United States of America 104:2537−42

doi: 10.1073/pnas.0610278104
[73]

Quirino BF, Reiter WD, Amasino RD. 2001. One of two tandem Arabidopsis genes homologous to monosaccharide transporters is senescence-associated. Plant Molecular Biology 46:447−57

doi: 10.1023/A:1010639015959
[74]

Feng C, Feng C, Lin X, Liu S, Li Y, et al. 2021. A chromosome-level genome assembly provides insights into ascorbic acid accumulation and fruit softening in guava (Psidium guajava). Plant Biotechnology Journal 19:717−30

doi: 10.1111/pbi.13498
[75]

Wang D, Yeats TH, Uluisik S, Rose JKC, Seymour GB. 2018. Fruit softening: revisiting the role of pectin. Trends in Plant Science 23:302−10

doi: 10.1016/j.tplants.2018.01.006
[76]

Yan J, Ban Z, Lu H, Li D, Poverenov E, et al. 2018. The aroma volatile repertoire in strawberry fruit: a review. Journal of the Science of Food and Agriculture 98:4395−402

doi: 10.1002/jsfa.9039
[77]

Zhang S, Xu L, Liu Y, Fu H, Xiao Z, et al. 2018. Characterization of aroma-active components and antioxidant activity analysis of E-jiao (Colla Corii Asini) from different geographical origins. Natural Products and Bioprospecting 8:71−82

doi: 10.1007/s13659-017-0149-3
[78]

Li M, Li L, Dunwell JM, Qiao X, Liu X, et al. 2014. Characterization of the lipoxygenase (LOX) gene family in the Chinese white pear (Pyrus bretschneideri) and comparison with other members of the Rosaceae. BMC Genomics 15:444

doi: 10.1186/1471-2164-15-444
[79]

Bannenberg G, Martínez M, Hamberg M, Castresana C. 2009. Diversity of the enzymatic activity in the lipoxygenase gene family of Arabidopsis thaliana. Lipids 44:85−95

doi: 10.1007/s11745-008-3245-7
[80]

Podolyan A, White J, Jordan B, Winefield C. 2010. Identification of the lipoxygenase gene family from Vitis vinifera and biochemical characterisation of two 13-lipoxygenases expressed in grape berries of Sauvignon Blanc. Functional Plant Biology 37:767−84

doi: 10.1071/FP09271
[81]

Wu Y, Zhang W, Song S, Xu W, Zhang C, et al. 2020. Evolution of volatile compounds during the development of Muscat grape 'Shine Muscat' (Vitis labrusca × V. vinifera). Food Chemistry 309:125778

doi: 10.1016/j.foodchem.2019.125778
[82]

Jin Y, Zhang C, Liu W, Tang Y, Qi H, et al. 2016. The alcohol dehydrogenase gene family in melon (Cucumis melo L.): Bioinformatic analysis and expression patterns. Frontiers in Plant Science 7:670

doi: 10.3389/fpls.2016.00670
[83]

Komatsu S, Thibaut D, Hiraga S, Kato M, Chiba M, et al. 2011. Characterization of a novel flooding stress-responsive alcohol dehydrogenase expressed in soybean roots. Plant Molecular Biology 77:309−22

doi: 10.1007/s11103-011-9812-y
[84]

Perry DJ, Furnier GR. 1996. Pinus banksiana has at least seven expressed alcohol dehydrogenase genes in two linked groups. Proceedings of the National Academy of Sciences of the United States of America 93:13020−23

doi: 10.1073/pnas.93.23.13020
[85]

Strommer J. 2011. The plant ADH gene family. The Plant Journal 66:128−42

doi: 10.1111/j.1365-313X.2010.04458.x
[86]

Günther CS, Heinemann K, Laing WA, Nicolau L, Marsh KB. 2011. Ethylene-regulated (methylsulfanyl)alkanoate ester biosynthesis is likely to be modulated by precursor availability in Actinidia chinensis genotypes. Journal of Plant Physiology 168:629−38

doi: 10.1016/j.jplph.2010.10.001
[87]

Wibowo WA, Fatkhurohman MI, Daryono BS. 2020. Characterization and expression of Cm-AAT1 gene encoding alcohol acyl-transferase in melon fruit (Cucumis melo L.) 'Hikapel'. Biodiversitas Journal of Biological Diversity 21:3041−46

doi: 10.13057/biodiv/d210722
[88]

Crowhurst RN, Gleave AP, MacRae EA, Ampomah-Dwamena C, Atkinson RG, et al. 2008. Analysis of expressed sequence tags from Actinidia: applications of a cross species EST database for gene discovery in the areas of flavor, health, color and ripening. BMC Genomics 9:351

doi: 10.1186/1471-2164-9-351
[89]

Rendón-Anaya M, Ibarra-Laclette E, Méndez-Bravo A, Lan T, Zheng C, et al. 2019. The avocado genome informs deep angiosperm phylogeny, highlights introgressive hybridization, and reveals pathogen-influenced gene space adaptation. Proceedings of the National Academy of Sciences of the United States of America 116:17081−89

doi: 10.1073/pnas.1822129116