Xuan W, Opdenacker D, Vanneste S, Beeckman T. 2018. Long-term in vivo imaging of luciferase-based reporter gene expression in Arabidopsis roots. In Root Development. Methods in Molecular Biology, eds. Ristova D, Barbez E. New York: Humana Press. pp. 177−90. https://doi.org/10.1007/978-1-4939-7747-5_13

Anders S, Pyl PT, Huber W. 2015. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166−69

doi: 10.1093/bioinformatics/btu638

Bao Y, Aggarwal P, Robbins NE II, Sturrock CJ, Thompson MC, et al. 2014. Plant roots use a patterning mechanism to position lateral root branches toward available water. Proceedings of the National Academy of Sciences of the United States of America 111:9319−24

doi: 10.1073/pnas.1400966111

Beeckman T, Engler G. 1994. An easy technique for the clearing of histochemically stained plant tissue. Plant Molecular Biology Reporter 12:37−42

doi: 10.1007/BF02668662

Benfey PN, Scheres B. 2000. Root development. Current Biology 10:R813−R815

doi: 10.1016/s0960-9822(00)00814-9

Brautigan DJ, Rengasamy P, Chittleborough DJ. 2012. Aluminium speciation and phytotoxicity in alkaline soils. Plant and Soil 360:187−96

doi: 10.1007/s11104-012-1232-5

Brunoud G, Wells DM, Oliva M, Larrieu A, Mirabet V, et al. 2012. A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482:103−6

doi: 10.1038/nature10791

Cavallari N, Artner C, Benkova E. 2021. Auxin-regulated lateral root organogenesis. Cold Spring Harbor Perspectives in Biology 13:a039941

doi: 10.1101/cshperspect.a039941

Chen Q, Liu Y, Maere S, Lee E, van Isterdael G, et al. 2015. A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development. Nature Communications 6:8821

doi: 10.1038/ncomms9821

Chen S, Zhou Y, Chen Y, Gu J. 2018. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884−i890

doi: 10.1093/bioinformatics/bty560

Choudhury FK, Rivero RM, Blumwald E, Mittler R. 2017. Reactive oxygen species, abiotic stress and stress combination. The Plant Journal 90:856−67

doi: 10.1111/tpj.13299

Cross AT, Stevens JC, Sadler R, Moreira-Grez B, Ivanov D, et al. 2021. Compromised root development constrains the establishment potential of native plants in unamended alkaline post-mining substrates. Plant and Soil 461:163−79

doi: 10.1007/s11104-018-3876-2

De Rybel B, Vassileva V, Parizot B, Demeulenaere M, Grunewald W, et al. 2010. A novel Aux/IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity. Current Biology 20:1697−706

doi: 10.1016/j.cub.2010.09.007

de Smet I, Vassileva V, de Rybel B, Levesque MP, Grunewald W, et al. 2008. Receptor-like kinase ACR4 restricts formative cell divisions in the Arabidopsis root. Science 322:594−97

doi: 10.1126/science.1160158

Dietrich D, Pang L, Kobayashi A, Fozard JA, Boudolf V, et al. 2017. Root hydrotropism is controlled via a cortex-specific growth mechanism. Nature Plants 3:17057

doi: 10.1038/nplants.2017.57

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, et al. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15−21

doi: 10.1093/bioinformatics/bts635

Du Y, Scheres B. 2017. PLETHORA transcription factors orchestrate de novo organ patterning during Arabidopsis lateral root outgrowth. Proceedings of the National Academy of Sciences of the United States of America 114:11709−14

doi: 10.1073/pnas.1714410114

Duan X, Xu S, Xie Y, Li L, Qi W, et al. 2021. Periodic root branching is influenced by light through an HY1-HY5-auxin pathway. Current Biology 31:3834−3847.E5

doi: 10.1016/j.cub.2021.06.055

Dubrovsky JG, Sauer M, Napsucialy-Mendivil S, Ivanchenko MG, Friml J, et al. 2008. Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proceedings of the National Academy of Sciences of the United States of America 105:8790−94

doi: 10.1073/pnas.0712307105

Ďurkovič J, Lux A. 2010. Micropropagation with a novel pattern of adventitious rooting in American sweetgum (Liquidambar styraciflua L.). Trees 24:491−7

doi: 10.1007/s00468-010-0418-9

Feng W, Lindner H, Robbins NE, Dinneny JR. 2016. Growing out of stress: the role of cell- and organ-scale growth control in plant water-stress responses. The Plant Cell 28:1769−82

doi: 10.1105/tpc.16.00182

Friml J, Gallei M, Gelová Z, Johnson A, Mazur E, et al. 2022. ABP1-TMK auxin perception for global phosphorylation and auxin canalization. Nature 609:575−81

doi: 10.1038/s41586-022-05187-x

Fujinami R, Yamada T, Nakajima A, Takagi S, Idogawa A, et al. 2017. Root apical meristem diversity in extant lycophytes and implications for root origins. New Phytologist 215:1210−20

doi: 10.1111/nph.14630

Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou I, et al. 2007. PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449:1053−57

doi: 10.1038/nature06206

Galvan-Ampudia CS, Julkowska MM, Darwish E, Gandullo J, Korver RA, et al. 2013. Halotropism is a response of plant roots to avoid a saline environment. Current Biology 23:2044−50

doi: 10.1016/j.cub.2013.08.042

Geng G, Wang G, Stevanato P, Lv C, Wang Q, et al. 2021. Physiological and proteomic analysis of different molecular mechanisms of sugar beet response to acidic and alkaline pH environment. Frontiers in Plant Science 12:682799

doi: 10.3389/fpls.2021.682799

Giehl RFH, von Wirén N. 2014. Root nutrient foraging. Plant Physiology 166:509−17

doi: 10.1104/pp.114.245225

Gjetting SK, Ytting CK, Schulz A, Fuglsang AT. 2012. Live imaging of intra- and extracellular pH in plants using pHusion, a novel genetically encoded biosensor. Journal of Experimental Botany 63:3207−18

doi: 10.1093/jxb/ers040

Gujas B, Alonso-Blanco C, Hardtke CS. 2012. Natural Arabidopsis brx loss-of-function alleles confer root adaptation to acidic soil. Current Biology 22:1962−68

doi: 10.1016/j.cub.2012.08.026

Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, et al. 2010. Significant acidification in major Chinese croplands. Science 327:1008−10

doi: 10.1126/science.1182570

Hopkins F, Gonzalez-Meler MA, Flower CE, Lynch DJ, Czimczik C, et al. 2013. Ecosystem-level controls on root-rhizosphere respiration. New Phytologist 199:339−51

doi: 10.1111/nph.12271

Jia L, Xie Y, Wang Z, Luo L, Zhang C, et al. 2020. Rice plants respond to ammonium stress by adopting a helical root growth pattern. The Plant Journal 104:1023−37

doi: 10.1111/tpj.14978

Kim JY, Henrichs S, Bailly A, Vincenzetti V, Sovero V, et al. 2010. Identification of an ABCB/P-glycoprotein-specific inhibitor of auxin transport by chemical genomics. The Journal of Biological Chemistry 285:23309−17

doi: 10.1074/jbc.M110.105981

Kim Y, Chung YS, Lee E, Tripathi P, Heo S, et al. 2020. Root response to drought stress in rice (Oryza sativa L.). International Journal of Molecular Sciences 21:1513

doi: 10.3390/ijms21041513

Kircher S, Schopfer P. 2018. The plant hormone auxin beats the time for oscillating light-regulated lateral root induction. Development 145:dev169839

doi: 10.1242/dev.169839

Lagerwerff JV, Brower DL. 1972. Exchange adsorption of trace quantities of cadmium in soils treated with chlorides of aluminum, calcium and sodium. Soil Science Society of America Journal 36:734−37

doi: 10.2136/sssaj1972.03615995003600050017x

Li C, Liu G, Geng X, He C, Quan T, et al. 2021. Local regulation of auxin transport in root-apex transition zone mediates aluminium-induced Arabidopsis root-growth inhibition. The Plant Journal 108:55−66

doi: 10.1111/tpj.15424

Liu L, Song W, Huang S, Jiang K, Moriwaki Y, et al. 2022. Extracellular pH sensing by plant cell-surface peptide-receptor complexes. Cell 185:3341−3355.e13

doi: 10.1016/j.cell.2022.07.012

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550

doi: 10.1186/s13059-014-0550-8

Luo H, Xu H, Chu C, He F, Fang S. 2020a. High temperature can change root system architecture and intensify root interactions of plant seedlings. Frontiers in Plant Science 11:160

doi: 10.3389/fpls.2020.00160

Luo L, Zhang Y, Xu G. 2020b. How does nitrogen shape plant architecture? Journal of Experimental Botany 71:4415−27

doi: 10.1093/jxb/eraa187

Ma X, Yan H, Yang J, Liu Y, Li Z, et al. 2021. PlantGSAD: a comprehensive gene set annotation database for plant species. Nucleic Acids Research 50:D1456−D1467

doi: 10.1093/nar/gkab794

Malamy JE, Benfey PN. 1997. Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124:33−44

doi: 10.1242/dev.124.1.33

Möller BK, Xuan W, Beeckman T. 2017. Dynamic control of lateral root positioning. Current Opinion in Plant Biology 35:1−7

doi: 10.1016/j.pbi.2016.09.001

Moreno-Risueno MA, van Norman JM, Moreno A, Zhang J, Ahnert SE, et al. 2010. Oscillating gene expression determines competence for periodic Arabidopsis root branching. Science 329:1306−11

doi: 10.1126/science.1191937

Msimbira LA, Smith DL. 2020. The roles of plant growth promoting microbes in enhancing plant tolerance to acidity and alkalinity stresses. Frontiers in Sustainable Food Systems 4:106

doi: 10.3389/fsufs.2020.00106

Ojeda-Rivera JO, Oropeza-Aburto A, Herrera-Estrella L. 2020. Dissection of root transcriptional responses to low pH, aluminum toxicity and iron excess under pi-limiting conditions in Arabidopsis wild-type and stop1 seedlings. Frontiers in Plant Science 11:01200

doi: 10.3389/fpls.2020.01200

Orman-Ligeza B, Morris EC, Parizot B, Lavigne T, Babé A, et al. 2018. The xerobranching response represses lateral root formation when roots are not in contact with water. Current Biology 28:3165−3173.e5

doi: 10.1016/j.cub.2018.07.074

van Gelderen K, Kang C, Paalman R, Keuskamp D, Hayes S, et al. 2018. Far-red light detection in the shoot regulates lateral root development through the HY5 transcription factor. The Plant Cell 30:101−16

doi: 10.1105/tpc.17.00771

van Norman JM, Xuan W, Beeckman T, Benfey PN. 2013. To branch or not to branch: the role of pre-patterning in lateral root formation. Development 140:4301−10

doi: 10.1242/dev.090548

Vermeer JEM, von Wangenheim D, Barberon M, Lee Y, Stelzer EHK, et al. 2014. A spatial accommodation by neighboring cells is required for organ initiation in Arabidopsis. Science 343:178−83

doi: 10.1126/science.1245871

Wang S, Zhao Z, Ge S, Zhang K, Tian C, et al. 2022. The effects of Suaeda salsa/Zea mays L. intercropping on plant growth and soil chemical characteristics in saline soil. Agriculture 12:107

doi: 10.3390/agriculture12010107

Xuan W, Audenaert D, Parizot B, Möller BK, Njo MF, et al. 2015. Root cap-derived auxin pre-patterns the longitudinal axis of the Arabidopsis root. Current Biology 25:1381−8

doi: 10.1016/j.cub.2015.03.046

Xuan W, Band LR, Kumpf RP, van Damme D, Parizot B, et al. 2016. Cyclic programmed cell death stimulates hormone signaling and root development in Arabidopsis. Science 351:384−87

doi: 10.1126/science.aad2776

Xuan W, Opdenacker D, Vanneste S, Beeckman T. 2018. Long-term in vivo imaging of luciferase-based reporter gene expression in Arabidopsis roots. In Root Development. Methods in Molecular Biology, eds. Ristova D, Barbez E. Vol 1761. New York: Humana Press. pp. 177−90 https://doi.org/10.1007/978-1-4939-7747-5_13

Zhang J, Wang X, Zhang L, Zhao F. 2021. Reducing cadmium bioavailability and accumulation in vegetable by an alkalizing bacterial strain. The Science of the Total Environment 758:143596

doi: 10.1016/j.scitotenv.2020.143596