[1] |
Huck M, Carrow RN, Duncan RR. 2000. Effluent water: nightmare or dream come true. USGA Green Section Record 38:15−29 |
[2] |
The U. S. Environmental Protection Agency. 2013. Reduce your outdoor water use. https://19january2017snapshot.epa.gov/www3/watersense/docs/factsheet_outdoor_water_use_508.pdf |
[3] |
Liu J, Yang H, Gosling SN, Kummu M, Flörke M, et al. 2017. Water scarcity assessments in the past, present, and future. Earth's Future 5:545−59 doi: 10.1002/2016EF000518 |
[4] |
Kirda C, Kanber R. 1999. Water, no longer a plentiful resource, should be used sparingly in irrigated agriculture. In Crop Yield Response to Deficit Irrigation, eds Kirda C, Moutonnet P, Hera C, Nielsen DR. Dordrecht: Kluwer Academic Publishers. pp. 1−20. |
[5] |
Milesi C, Running SW, Elvidge CD, Dietz JB, Tuttle BT, et al. 2005. Mapping and modeling the biogeochemical cycling of turf grasses in the United States. Environmental Management 36:426−38 doi: 10.1007/s00267-004-0316-2 |
[6] |
Beard JB. 1973. Turfgrass: science and culture. x, 658 pp. Englewood Cliffs, NJ: Prentice Hall. |
[7] |
Fribourg HA, Hannaway DB, West CP, eds. 2009. Tall fescue for the twenty-first century. xxiii, 539 pp. Madison, WI: ASA, CSSA, SSSA. https://doi.org/10.2134/agronmonogr53 |
[8] |
De la Peña R, Hughes J. 2007. Improving vegetable productivity in a variable and changing climate. Journal of SAT Agricultural Research 4:1−22 |
[9] |
Diab AA, Teulat-Merah B, This D, Ozturk NZ, Benscher D, et al. 2004. Identification of drought-inducible genes and differentially expressed sequence tags in barley. Theoretical and Applied Genetics 109:1417−25 doi: 10.1007/s00122-004-1755-0 |
[10] |
Rebetzke GJ, Richards RA, Condon AG, Farquhar GD. 2006. Inheritance of carbon isotope discrimination in bread wheat (Triticum aestivum L. ). Euphytica 150:97−106 doi: 10.1007/s10681-006-9097-4 |
[11] |
Dhanda SS, Sethi GS. 1998. Inheritance of excised-leaf water loss and relative water content in bread wheat (Triticum aestivum). Euphytica 104:39−47 doi: 10.1023/A:1018644113378 |
[12] |
Tuinstra MR, Grote EM, Goldsbrough PB, Ejeta G. 1997. Genetic analysis of post-flowering drought tolerance and components of grain development in Sorghum bicolor (L.) Moench. Molecular Breeding 3:439−48 doi: 10.1023/A:1009673126345 |
[13] |
Nyquist WE, Baker RJ. 1991. Estimation of heritability and prediction of selection response in plant populations. Critical Reviews in Plant Sciences 10:235−322 doi: 10.1080/07352689109382313 |
[14] |
Dudley JW, Moll RH. 1969. Interpretation and use of estimates of heritability and genetic variances in plant breeding. Crop Science 9:257−62 doi: 10.2135/cropsci1969.0011183X000900030001x |
[15] |
Sleper DA, Poehlman JM. 2006. Breeding field crops. Fifth edition. Ames, Iowa: Blackwell Publishing. 424 pp. |
[16] |
Burton GW, DeVane EH. 1953. Estimating heritability in tall fescue (Festuca arundinacea) from replicated clonal material. Agronomy Journal 45:478−81 doi: 10.2134/agronj1953.00021962004500100005x |
[17] |
Griffing B. 1956. Concept of general and specific combining ability in relation to diallel crossing systems. Australian Journal of Biological Sciences 9:463−93 doi: 10.1071/BI9560463 |
[18] |
Hayman BI. 1957. Interaction, heterosis and diallel crosses. Genetics 42:336−55 doi: 10.1093/genetics/42.3.336 |
[19] |
Bokmeyer JM, Bonos SA, Meyer WA. 2009. Inheritance characteristics of brown patch resistance in tall fescue. Crop Science 49:2302−8 doi: 10.2135/cropsci2009.02.0071 |
[20] |
Cross JW, Bonos SA, Huang B, Meyer WA. 2013. Evaluation of heat and drought as components of summer stress on tall fescue genotypes. HortScience 48:1562−67 doi: 10.21273/HORTSCI.48.12.1562 |
[21] |
Elbersen HW, West CP. 1996. Growth and water relations of field-grown tall fescue as influenced by drought and endophyte. Grass and Forage Science 51:333−42 doi: 10.1111/j.1365-2494.1996.tb02068.x |
[22] |
West CP. 1994. Physiology and drought tolerance of endophyte-lnfected grasses. In Biotechnology of Endophytic Fungi of Grasses, eds Bacon CW, White JF. 226 pp. Boca Raton, FL: CRC Press. pp. 87−99. https://doi.org/10.1201/9781351070324-7 |
[23] |
Fehr WR. 1987. Principles of cultivar development. volume 1. theory and technique. xiv, 536 pp. New York: Macmillan Publishing Company. |
[24] |
Nguyen HT, Sleper DA. 1983. Theory and application of half-sib matings in forage grass breeding. Theoretical and Applied Genetics 64:187−96 doi: 10.1007/BF00303763 |
[25] |
Meyer WA, Watkins E. 2003. Tall fescue (Festuca arundinacea). In Turfgrass Biology, Genetics, and Breeding, eds Casler MD, Duncan RR. x, 367 pp. Hoboken, New Jersey: John Wiley & Sons Inc. pp. 107−27. |
[26] |
Vogel KP, Pederson JF. 1993. Breeding systems for cross-pollenated perennial grasses. In Plant Breeding Reviews, ed. Janick J, 11: viii, 333 pp. Hoboken, New Jersey: John Wiley & Sons, Inc. pp 251−74. https://doi.org/10.1002/9780470650035.ch7 |
[27] |
Hurlbert SH. 1984. Pseudoreplication and the design of ecological field experiments. Ecological Monographs 54:187−211 doi: 10.2307/1942661 |
[28] |
Onofri A, Terzaroli N, Russi L. 2021. Linear models for diallel crosses: a review with R functions. Theoretical and Applied Genetics 134:585−601 doi: 10.1007/s00122-020-03716-8 |
[29] |
Bonos SA. 2006. Heritability of dollar spot resistance in creeping bentgrass. Phytopathology 96:808−12 doi: 10.1094/PHYTO-96-0808 |
[30] |
Falconer DS, MacKay TFC. 1996. Introduction to quantitative genetics (4th edn). xv, 464 pp. Essex, England: Longman Group Limited. |
[31] |
Sleper DA, West CP. 1996. Tall fescue. In Cool‐Season Forage Grasses, eds Moser LE, Buxton DR, Casler MD. xix, 841 pp. ASA, CSSA and SSSA, Madison. pp. 471−502. https://doi.org/10.2134/agronmonogr34.c15 |
[32] |
Casler MD. 1982. Genotype × environment interaction bias to parent-offspring regression heritability estimates. Crop Science 22:540−42 doi: 10.2135/cropsci1982.0011183X002200030024x |
[33] |
Hartl DL, Jones EW. 2005. Genetics: analysis of genes and genomes. 854 pp. Sudbury, MA: Jones and Bartlett Publishers Inc. |
[34] |
Tan C, Wu Y, Taliaferro CM, Bell GE, Martin DL, et al. 2022. Heritability estimates for seed yield and its components in Cynodon dactylon var. dactylon (L.) Pers. Grass Research 2:1−6 doi: 10.48130/GR-2022-0007 |
[35] |
Majidi MM, Mirlohi A, Amini F. 2009. Genetic variation, heritability and correlations of agro-morphological traits in tall fescue (Festuca arundinacea Schreb.). Euphytica 167:323−31 doi: 10.1007/s10681-009-9887-6 |
[36] |
Wofford DS, Baltensperger AA. 1985. Heritability estimates for turfgrass characteristics in bermudagrass. Crop Science 25:133−36 doi: 10.2135/cropsci1985.0011183X002500010033x |
[37] |
Amini F, Majidi MM, Mirlohi A. 2013. Genetic and genotype × environment interaction analysis for agronomical and some morphological traits in half-sib families of tall fescue. Crop Science 53:411−21 doi: 10.2135/cropsci2012.05.0277 |
[38] |
Lehman VG, Engelke MC. 1991. Heritability estimates of creeping bentgrass root systems grown in flexible tubes. Crop Science 31:1680−84 doi: 10.2135/cropsci1991.0011183X003100060059x |
[39] |
Nguyen HT, Sleper DA. 1983. Genetic variability of seed yield and reproductive characters in tall fescue. Crop Science 23:621−26 doi: 10.2135/cropsci1983.0011183X002300040006x |
[40] |
Ekanayake IJ, O'Toole JC, Garrity DP, Masajo TM. 1985. Inheritance of root characters and their relations to drought resistance in rice. Crop Science 25:927−33 doi: 10.2135/cropsci1985.0011183X002500060007x |
[41] |
Bonos SA, Rush D, Hignight K, Meyer WA. 2004. Selection for deep root production in tall fescue and perennial ryegrass. Crop Science 44:1770−75 doi: 10.2135/cropsci2004.1770 |
[42] |
Bonos SA, Casler MD, Meyer WA. 2003. Inheritance of dollar spot resistance in creeping bentgrass. Crop Science 43:2189−96 doi: 10.2135/cropsci2003.2189 |