[1]

Sale AJH, Hamilton WA. 1967. Effects of high electric fields on microorganisms. I. Killing of bacteria and yeasts. Biochimica et Biophysica Acta (BBA) - General Subjects 148:781−88

doi: 10.1016/0304-4165(67)90052-9
[2]

Hamilton WA, Sale AJH. 1967. Effects of high electric fields on microorganisms. II. Mechanism of action of the lethal effect. Biochimica et Biophysica Acta (BBA) - General Subjects 148:789−800

doi: 10.1016/0304-4165(67)90053-0
[3]

Collin A, Bruhier, H Kolosnjaj J, Golzio M, Rols MP, et al. 2022. Spatial mechanistic modeling for prediction of 3D multicellular spheroids behavior upon exposure to high intensity pulsed electric fields. AIMS Bioengineering 9(2):102−22

doi: 10.3934/bioeng.2022009
[4]

Peng Y, Liao Z, Zhang Y, Fang Y, Qiu Z, et al. 2022. Analysis of deformation dynamics of droplet in oil under the CPG electric field. Chemical Engineering Research and Design 183:357−67

doi: 10.1016/j.cherd.2022.05.024
[5]

Sato T, Murakami Y, Muramoto Y. 2019. Estimation of liquid sterilization using critical voltage under high electric field pulses. IEEJ Transactions on Electrical and Electronic Engineering 14:1002−7

doi: 10.1002/tee.22895
[6]

International Commission on Microbiological Specifications for Foods (ICMSF). 2006. A simplified guide to understanding and using food safety objectives and performance objectives. www.icmsf.org/wp-content/uploads/2018/02/GuiaSimplificadoEnglish.pdf

[7]

Siemer C. 2022. Improved Pulsed Electric Field processing units for decontamination of thermosensitive protein-rich foods. Presentation no. OR-117, the 4th World Congress on Electroporation, Copenhagen, Denmark, October 9−13, 2022. https://wc2022.electroporation.net/event/program/#track-533

[8]

Michael DH, O'Neill ME. 1970. Electrohydrodynamic instability in plane layers of fluid. Journal of Fluid Mechanics 41:571−80

doi: 10.1017/S0022112070000757
[9]

Crowley JM. 1973. Electrical breakdown of bimolecular lipid membranes as an electromechanical instability. Biophysical Journal 13:711−24

doi: 10.1016/S0006-3495(73)86017-5
[10]

Abidor IG, Arakelyan VB, Chernomordik LV, Chizmadzhev YA, Pastushenko VF, et al. 1979. Electric breakdown of bilayer lipid membranes I. The main experimental facts and their qualitative discussion. Bioelectrochemistry and Bioenergetics 6:37−52

doi: 10.1016/0302-4598(79)85005-9
[11]

Pastushenko VF, Chizmadzhev YA, Arakelyan VB. 1979. Electric breakdown of bilayer lipid membranes II. Calculation of the membrane lifetime in the steady-state diffusion approximation. Bioelectrochemistry and Bioenergetics 6:53−62

doi: 10.1016/0302-4598(79)85006-0
[12]

Cho HY, Yousef AE, Sastry SK. 1996. Growth kinetics of Lactobacillus acidophilus under ohmic heating. Biotechnology and Bioengineering 49:334−40

doi: 10.1002/(SICI)1097-0290(19960205)49:3<334::AID-BIT12>3.0.CO;2-E
[13]

Kulshrestha SA, Sastry SK. 2003. Frequency and voltage effects on enhanced diffusion during Moderate Electric Field (MEF) treatment. Innovative Food Science & Emerging Technologies 4(2):189−94

doi: 10.1016/s1466-8564(03)00003-1
[14]

Weaver JC, Chizmadzhev YA. 1996. Theory of electroporation: a review. Bioelectrochemistry and Bioenergetics 41:135−60

doi: 10.1016/S0302-4598(96)05062-3
[15]

Parseghian A. 1969. Energy of an ion crossing a low dielectric membrane: solutions to four relevant electrostatic problems. Nature 221:844−46

doi: 10.1038/221844a0
[16]

Shillcock JC, Seifert U. 1998. Thermally induced proliferation of pores in a model fluid membrane. Biophysical Journal 74:1754−66

doi: 10.1016/S0006-3495(98)77886-5
[17]

Neu JC, Krassowska W. 1999. Asymptotic model of electroporation. Physical Review E 59(1):3471−82

doi: 10.1103/physreve.59.3471
[18]

Smith, KC. 2006. Modeling cell and tissue electroporation. M. S. Thesis, Massachusetts Institute of Technology, Cambridge, MA.

[19]

Mukhopadhyay P, Vogel HJ, Tieleman DP. 2004. Distribution of Pentachlorophenol in phospholipid bilayers: A molecular dynamics study. Biophysical Journal 86(1):337−45

doi: 10.1016/S0006-3495(04)74109-0
[20]

Vernier PT, Ziegler MJ. 2007. Nanosecond field alignment of head group and water dipoles in electroporating phospholipid bilayers. The Journal of Physical Chemistry 111:12993−96

doi: 10.1021/jp077148q
[21]

Böckmann RA, de Groot BL, Kakorin S, Neumann E, Grubmüller H. 2008. Kinetics, statistics and energetics of lipid membrane electroporation studied by molecular dynamics simulations. Biophysical Journal 95:1837−50

doi: 10.1529/biophysj.108.129437
[22]

Griese T, Kakorin S, Neumann E. 2002. Conductometric and electrooptic relaxation spectrometry of lipid vesicle electroporation at high fields. Physical Chemistry Chemical Physics 4:1217−27

doi: 10.1039/b108193b
[23]

Huang K, Jiang T, Wang, W, Gai L, Wang J. 2014. A comparison of pulsed electric field resistance for three microorganisms with different biological factors in grape juice via numerical simulation. Food and Bioprocess Technology 7:1981−95

doi: 10.1007/s11947-014-1272-3
[24]

Yin Y, Zhang QH, Sastry SK. 1997. High voltage pulsed electric field treatment chambers for the preservation of liquid food products. USA, Patent 5, 690, 978.

[25]

Martín O, Qin BL, Chang FJ, Barbosa-Cánovas GV, Swanson BG. 1997. Inactivation of Escherichia coli in skim milk by high intensity pulsed electric fields. Journal of Food Process Engineering 20:317−36

doi: 10.1111/j.1745-4530.1997.tb00425.x
[26]

Toepfl S, Heinz V, Knorr D. 2007. High intensity pulsed electric fields applied for food preservation. Chemical Engineering and Processing: Process Intensification 46(6):537−46

doi: 10.1016/j.cep.2006.07.011
[27]

Qin B, Zhang Q, Barbosa-Cánovas GV, Swanson BG, Pedrow PD. 1995. Pulsed electric field treatment chamber design for liquid food pasteurization using a finite element method. Transactions of the ASAE 38:557−65

doi: 10.13031/2013.27866
[28]

Misaki T, Tsuboi H, Itaka K, Hara T. 1982. Computation of three-dimensional electric field problems by a surface charge method and its application to optimum insulator design. IEEE Transactions on Power Apparatus and Systems PAS PAS-101:627−34

doi: 10.1109/TPAS.1982.317276
[29]

Góngora-Nieto MM, Pedrow PD, Swanson BG, Barbosa-Cánovas GV. 2003. Impact of air bubbles in a dielectric liquid when subject to high field strengths. Innovative Food Science & Emerging Technologie 4:57−67

doi: 10.1016/S1466-8564(02)00067-X
[30]

Li J, Wei X, Wang Y, Liu G. 2009. Analysis for relationship of transmembrane potential-pulsed electric field frequency. Food and Bioproducts Processing 87:261−65

doi: 10.1016/j.fbp.2008.10.003
[31]

Fiala A, Wouters PC, van den Bosch E, Creyghton YLM. 2001. Coupled electrical-fluid model of pulsed electric field treatment in a model food system. Innovative Food Science and Emerging 2:229−38

doi: 10.1016/s1466-8564(01)00042-x
[32]

Gerlach D, Alleborn N, Baars A, Delgado A, Moritz J, et al. 2008. Numerical simulations of pulsed electric fields for food preservation: a review. Innovative Food Science and Emerging Technologies, 9:408−17

doi: 10.1016/j.ifset.2008.02.001
[33]

Jaeger H, Meneses N, Knorr D. 2009. Impact of PEF treatment inhomogeneity such as electric field distribution, flow characteristics and temperature effects on the inactivation of E. coli and milk alkaline phosphatase. Innovative Food Science and Emerging Technologies 10:470−80

doi: 10.1016/j.ifset.2009.03.001
[34]

Buckow R, Schroeder S, Berres P, Baumann P, Knoerzer K. 2010. Simulation and evaluation of pilot-scale pulsed electric field (PEF) processing. Journal of Food Engineering 101:67−77

doi: 10.1016/j.jfoodeng.2010.06.010
[35]

Meneses N, Jaeger H, Knorr D. 2011. Minimization of thermal impact by application of electrode cooling in a co-linear PEF treatment chamber. Journal of Food Science 76(8):E536−E543

doi: 10.1111/j.1750-3841.2011.02368.x
[36]

Saldaña G, Puértolas E, Álvarez I, Meneses N, Knorr D, et al. 2010. Evaluation of a static treatment chamber to investigate kinetics of microbial inactivation by pulsed electric fields at different temperatures at quasi-isothermal conditions. Journal of Food Engineering 100:349−56

doi: 10.1016/j.jfoodeng.2010.04.021
[37]

Delgado A, Kulisiewicz L, Rauh C, Wierschem A. 2012. Fluid dynamics in novel thermal and non-thermal processes. In Novel Thermal and Non-Thermal Technologies for Fluid Foods, eds. Cullen PJ, Tiwari BK, Valdramidis VP. Academic Press, Elsevier. pp.7−33. https://doi.org/10.1016/B978-0-12-381470-8.00002-5

[38]

Salengke S, Sastry SK, Zhang QH. 2012. Pulsed electric field technology: modeling of electric field and temperature distributions within continuous flow PEF treatment chamber. International Food Research Journal 19(3):1137−44

[39]

Pataro G, Barca GMJ, Donsì G, Ferrari G. 2015. On the modeling of electrochemical phenomena at the electrode-solution interface in a PEF treatment chamber: Methodological approach to describe the phenomenon of metal release. Journal of Food Engineering 165:34−44

doi: 10.1016/j.jfoodeng.2015.05.009
[40]

Pataro G, Barca GMJ, Donsì G, Ferrari G. 2015. On the modelling of the electrochemical phenomena at the electrode-solution interface in a PEF treatment chamber: Effect of electrical parameters and chemical composition of model liquid food. Journal of Food Engineering 165:45−51

doi: 10.1016/j.jfoodeng.2015.05.010
[41]

Krauss J, Ertunç Ö, Rauh C, Delgado A. 2011. Novel, multi-objective optimization of pulsed electric field (PEF) treatment for liquid food treatment. In Multiphysics Simulation of Emerging Food Processing Technologies, eds. Knoerzer K, Juliano P, Roupas P, Versteeg C. John Wiley & Sons. 374 pp.

[42]

Lindgren M, Aronsson K, Galt S, Ohlsson T. 2002. Simulation of the temperature increase in pulsed electric field (PEF) continuous flow treatment chambers. Innovative Food Science & Emerging Technologies 3(3):233−45

doi: 10.1016/s1466-8564(02)00044-9
[43]

Rauh C, Baars A, Delgado A. 2009. Uniformity of enzyme inactivation in a short-time high-pressure process. Journal of Food Engineering 91:154−63

doi: 10.1016/j.jfoodeng.2008.08.019
[44]

Jaeger H, Meneses N, Moritz J, Knorr D. 2010. Model for the differentiation of temperature and electric field effects during thermal assisted PEF processing. Journal of Food Engineering 100:109−18

doi: 10.1016/j.jfoodeng.2010.03.034
[45]

Buckow R, Semrau J, Sui Q, Wan J, Knoerzer K. 2012. Numerical evaluation of lactoperoxidase inactivation during continuous pulsed electric field processing. Biotechnology Progress 28(5):1363−75

doi: 10.1002/btpr.1582
[46]

Duvoisin CA, Horst DJ, Vieira RA, Baretta D, Pscheidt A, et al. 2022. Finite element simulation and practical tests on Pulsed Electric Field (PEF) for packaged food pasteurization: inactivating E. coli, C. difficile, Salmonella spp. and mesophilic bacteria. Food Science and Technology 42:e115421

doi: 10.1590/fst.115421
[47]

Ganea I. 2017. Influence of the solid dielectric over the electric field from the ozone cell gap with double dielectric barrier. IOP Conference Series: Materials Science and Engineering 200:012058

doi: 10.1088/1757-899X/200/1/012058
[48]

Raso J, Alvarez I, Condón S, Sala Trepat FJ. 2000. Predicting inactivation of Salmonella senftenberg by pulsed electric fields. Innovative Food Science and Emerging Technologies 1:21−29

doi: 10.1016/S1466-8564(99)00005-3
[49]

Huang K, Tian H, Gai L, Wang J. 2012. A review of kinetic models for inactivating microorganisms and enzymes by pulsed electric field processing. Journal of Food Engineering 111:191−207

doi: 10.1016/j.jfoodeng.2012.02.007
[50]

Sensoy I, Zhang QH, Sastry SK. 1997. Inactivation kinetics of Salmonella dublin by Pulsed Electric Field. Journal of Food Process Engineering 20(5):367−81

doi: 10.1111/j.1745-4530.1997.tb00428.x
[51]

Peleg M, Cole MB. 1998. Reinterpretation of microbial survival curves. Critical Reviews in Food Science and Nutrition 38(5):353−80

doi: 10.1080/10408699891274246
[52]

Hülsheger H, Potel J, Niemann EG. 1981. Killing of bacteria with electric pulses of high field strength. Radiation and Environmental Biophysics 20(1):53−65

doi: 10.1007/BF01323926
[53]

Sale AJH, Hamilton WA. 1968. Effects of high electric fields on micro-organisms: III. Lysis of erythrocytes and protoplasts. Biochimica et Biophysica Acta (BBA) – Biomembranes 163(1):37−43

doi: 10.1016/0005-2736(68)90030-8
[54]

San Martín MF, Sepúlveda DR, Altunakar B, Góngora-Nieto MM, Swanson BG, et al. 2007. Evaluation of selected mathematical models to predict the inactivation of Listeria innocua by pulsed electric fields. LWT – Food Science and Technology 40(7):1271−79

doi: 10.1016/j.lwt.2006.08.011
[55]

Peleg M. 1995. A model of microbial survival after exposure to pulsed electric fields. Journal of the Science of Food and Agriculture 67(1):93−99

doi: 10.1002/jsfa.2740670115
[56]

Zhong K, Chen F, Wang Z, Wu J, Liao X, et al. 2005. Inactivation and kinetic model for the Escherichia coli treated by a co-axial pulsed electric field. European Food Research and Technology 221(6):752−58

doi: 10.1007/s00217-005-0015-0
[57]

Mafart P, Couvert O, Gaillard S, Leguerinel I. 2002. On calculating sterility in thermal preservation methods: application of the Weibull frequency distribution model. International Journal of Food Microbiology 72:107−13

doi: 10.1016/S0168-1605(01)00624-9
[58]

Alvarenga VO, Brito LM, Lacerda ICA. 2022. Application of mathematical models to validate emerging processing technologies in food. Current Opinion in Food Science 48:100928

doi: 10.1016/j.cofs.2022.100928
[59]

Min S, Min SK, Zhang QH. 2003. Inactivation kinetics of tomato juice lipoxygenase by pulsed electric fields. Journal of Food Science 68(6):1995−2001

doi: 10.1111/j.1365-2621.2003.tb07008.x
[60]

Donsì G, Ferrari G, Pataro G. 2007. Inactivation kinetics of Saccharomyces cerevisiae by pulsed electric fields in a batch treatment chamber: The effect of electric field unevenness and initial cell concentration. Journal of Food Engineering 78:784−92

doi: 10.1016/j.jfoodeng.2005.11.027
[61]

Pataro G, Senatore B, Donsì G, Ferrari G. 2011. Effect of electric and flow parameters on PEF treatment efficiency. Journal of Food Engineering 105:79−88

doi: 10.1016/j.jfoodeng.2011.02.007
[62]

Singh J, Singh M, Singh B, Nayak M, Ghanshyam C. 2017. Comparative analyses of prediction models for inactivation of Escherichia coli in carrot juice by means of pulsed electric fields. Journal of Food Science and Technology 54(6):1538−44

doi: 10.1007/s13197-017-2585-9
[63]

Giner J, Grouberman P, Gimeno V, Martín O. 2005. Reduction of pectinesterase activity in a commercial enzyme preparation by pulsed electric fields: comparison of inactivation kinetic models. Journal of the Science of Food and Agriculture 85:1613−21

doi: 10.1002/jsfa.2154
[64]

Giner J, Bailo E, Gimeno V, Martín-Belloso O. 2005. Models in a Bayesian framework for inactivation of pectinesterase in a commercial enzyme formulation by pulsed electric fields. European Food Research and Technology 221:255−64

doi: 10.1007/s00217-005-1143-2
[65]

Cole MB, Davies KW, Munro G, Holyoak CD, Kilsby DC. 1993. A vitalistic model to describe the thermal inactivation of Listeria monocytogenes. Journal of Industrial Microbiology 12:232−39

doi: 10.1007/BF01584195
[66]

Giner-Seguí J, Bailo-Ballarín E, Gorinstein S, Martín-Belloso O. 2006. New kinetic approach to the evolution of polygalacturonase (EC 32.2.1.15) activity in a commercial enzyme preparation under pulsed electric fields. Journal of Food Science 71(6):E262−E269

doi: 10.1111/j.1750-3841.2006.00054.x
[67]

Masood H, Trujillo FJ, Knoerzer K, Juliano P. 2018. Designing, Modeling, and Optimizing Processes to Ensure Microbial Safety and Stability Through Emerging Technologies. In Innovative Technologies for Food Preservation, eds. Barba FJ, Sant'Ana AS, Orlien V, Koubaa M. Academic Press. pp. 187-229. https://doi.org/10.l016/B978-0-12-811031-7.00006-6

[68]

Geeraerd AH, Valdramidis VP, Van Impe JF. 2005. GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. International Journal of Food Microbiology 102:95−105

doi: 10.1016/j.ijfoodmicro.2004.11.038
[69]

Cerf O. 1976. A review: Tailing of survival curves of bacterial spores. Journal of Applied Bacteriology 42:1−19

doi: 10.1111/j.1365-2672.1977.tb00665.x
[70]

Lebovka NI, Vorobiev E. 2004. On the origin of the deviation from the first-order kinetics in inactivation of microbial cells by pulsed electric fields. International Journal of Food Microbiology 91:83−89

doi: 10.1016/S0168-1605(03)00321-0
[71]

Schwan HP, Kay CF. 1957. The conductivity of living tissues. Annals of the New York Academy of Sciences 65(6):1007−13

doi: 10.1111/j.1749-6632.1957.tb36701.x
[72]

Timmermans RAH, Mastwijk HC, Berendsen LBJM, Nederhoff AL, Matser AM et al. 2019. Moderate intensity pulsed electric fields (PEF) as alternative mild preservation technology for fruit juice. International Journal of Food Microbiology 298:63−73

doi: 10.1016/j.ijfoodmicro.2019.02.015
[73]

Mendes-Oliveira G, Jin TZ, Campanella OH. 2020. Modeling the inactivation of Escherichia coli O157:H7 and Salmonella Typhimurium in juices by pulsed electric fields: The role of the energy density. Journal of Food Engineering, 282:110001

doi: 10.1016/j.jfoodeng.2020.110001
[74]

Peleg M, Penchina CM. 2000. Modeling Microbial Survival during Exposure to a Lethal Agent with Varying Intensity. Critical Reviews in Food Science and Nutrition 40(2):159−72

doi: 10.1080/10408690091189301
[75]

Loghavi L, Sastry SK, Yousef AE. 2009. Effect of moderate electric field frequency and growth stage on the cell membrane permeability of Lactobacillus acidophilus. Biotechnology Progress 25(1):85−94

doi: 10.1002/btpr.84
[76]

Guyot S, Ferret E, Boehm JB, Gervais P. 2007. Yeast cell inactivation related to local heating induced by low-intensity electric fields with long-duration pulses. International Journal of Food Microbiology 113:180−88

doi: 10.1016/j.ijfoodmicro.2006.06.036
[77]

Sastry SK. 2016. Toward a philosophy and theory of volumetric nonthermal processing. Journal of Food Science 81(6):E1431−E1446

doi: 10.1111/1750-3841.13324
[78]

Valdramidis VP, Taoukis PS, Stoforos NG, and Van Impe, JFM. 2012. Modeling the kinetics of microbial and quality attributes of fluid food during novel thermal and non-thermal processes. In Novel Thermal and Non-Thermal Technologies for Fluid Foods, eds. Cullen PJ, Tiwari BK, Valdramidis VP. Academic Press, Elsevier. pp. 433−71.https://doi.org/10.1016/B978-0-12-381470-8.00014-1

[79]

Hasting APM, Blackburn CDW, Crowther JS. 2001. Mycobacterium paratuberculosis and the commercial pasteurization of milk. Food and Bioproducts Processing 79:83−88

doi: 10.1205/096030801750286122
[80]

Delgado A, Rauh, C, Kowalczyk W, Baars A. 2008. Review of modelling and simulation of high-pressure treatment of materials of biological origin. Trends in Food Science & Technology 19:329−36

doi: 10.1016/j.jpgs.2008.01.009
[81]

Delgado A, Hartmann C. 2003. Pressure treatment of food: instantaneous but not homogeneous effect. In Advances in High Pressure Bioscience and Biotechnology II, ed. Winter R. Berlin, Heidelberg: Springer, Heidelberg. pp. 459−64. https://doi.org/10.1007/978-3-662-05613-4_83

[82]

Fox MB, Esveld DC, Mastwijk H, Boom RM. 2008. Inactivation of L. plantarum in a PEF microreactor:the effect of pulse width and temperature on the inactivation. Innovative Food Science and Emerging Technologies 9:101−8

doi: 10.1016/j.ifset.2007.06.007
[83]

Fox MB, Esveld E, Luttge R, Boom R. 2005. A new pulsed electric field microreactor: Comparison between the laboratory and microscale. Lab on a Chip 5(9):943−48

doi: 10.1039/b503704b
[84]

Kinosita K Jr, Ashikawa I, Saita N, Yoshimura H, Itoh H, et al. 1988. Electroporation of cell membrane visualized under a pulsed-laser fluorescence microscope. Biophysical Journal 53,(1988):1015−19

doi: 10.1016/S0006-3495(88)83181-3
[85]

Loghavi L, Sastry SK, Yousef AE. 2007. Effect of Moderate Electric Field on the metabolic activity and growth kinetics of Lactobacillus acidophilus. Biotechnology and Bioengineering 98(4):872−81

doi: 10.1002/bit.21465
[86]

Mok JH, Pyatkovskyy T, Yousef AE, Sastry SK. 2019. Combined effect of shear stress and moderate electric field on the inactivation of Escherichia coli K12 in apple juice. Journal of Food Engineering 262:121−30

doi: 10.1016/j.jfoodeng.2019.05.019