[1]

Khan LU, Cao X, Zhao R, Tan H, Huang X. 2022. Effect of temperature on yellow leaf disease (YLD) symptoms and its associated areca palm velarivirus 1 (APV1) titer in areca palm (Areca catechu L.). Frontiers in Plant Science, 13:1023386

doi: 10.3389/fpls.2022.1023386
[2]

Amudhan MS, Begum VH, Hebbar K. 2012. A review on phytochemical and pharmacological potential of Areca catechu L. seed. International Journal of Pharmaceutical Sciences and Research 3:4151−57

[3]

Hattori M, Kusumoto IT, Soga M, Namba T. 1993. Screening of various Ayurvedic medicines for their inhibitory activities on reverse transcriptase and identification of arecatannins and embelin as major inhibitory substances from Areca catechu and Embelia ribes. Journal of Medical and Pharmaceutical Society for WAKAN-YAKU 10:141−48

[4]

Khan WU, Khan RA, Ahmed M, Khan LU, Khan MW. 2016. Pharmacological evaluation of methanolic extract of Cyperus scariosus. Bangladesh Journal of Pharmacology 11:353−58

doi: 10.3329/bjp.v11i2.23611
[5]

Tian F, Woo SY, Lee SY, Park SB, Zheng Y, et al. 2022. Antifungal activity of essential oil and plant-derived natural compounds against Aspergillus flavus. Antibiotics 11:1727

doi: 10.3390/antibiotics11121727
[6]

Kaur S, Samota MK, Choudhary M, Choudhary M, Pandey AK, et al. 2022. How do plants defend themselves against pathogens-Biochemical mechanisms and genetic interventions. Physiology and Molecular Biology of Plants: an International Journal of Functional Plant Biology 28:485−504

doi: 10.1007/s12298-022-01146-y
[7]

Yun HS, Sul WJ, Chung HS, Lee JH, Kwon C. 2023. Secretory membrane traffic in plant-microbe interactions. New Phytologist 237:53−59

doi: 10.1111/nph.18470
[8]

Johnson PTJ, Ostfeld RS, Keesing F. 2015. Frontiers in research on biodiversity and disease. Ecology Letters 18:1119−33

doi: 10.1111/ele.12479
[9]

Keesing F, Belden LK, Daszak P, Dobson A, Harvell CD, et al. 2010. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468:647−52

doi: 10.1038/nature09575
[10]

To-anun C, Nguenhom J, Meeboon J, Hidayat I. 2009. Two fungi associated with necrotic leaflets of areca palms (Areca catechu). Mycological Progress 8:115−21

doi: 10.1007/s11557-009-0583-7
[11]

Wang H, Xu L, Zhang Z, Lin J, Huang X. 2019. First report of Curvularia pseudobrachyspora causing leaf spots in Areca catechu in China. Plant Disease 103:150

doi: 10.1094/pdis-06-18-1096-pdn
[12]

Ramaswamy M, Nair S, Soumya VP, Thomas GV. 2013. Phylogenetic analysis identifies a 'Candidatus Phytoplasma oryzae'-related strain associated with yellow leaf disease of areca palm (Areca catechu L.) in India. nternational Journal of Systematic and Evolutionary Microbiology 63:1376−82

doi: 10.1099/ijs.0.043315-0
[13]

Kanatiwela-de Silva C, Damayanthi M, de Silva R, Dickinson M, de Silva N, et al. 2015. Molecular and scanning electron microscopic proof of phytoplasma associated with areca palm yellow leaf disease in Sri Lanka. Plant Disease 99:1641−41

doi: 10.1094/pdis-01-15-0072-pdn
[14]

Yu H, Qi S, Chang Z, Rong Q, Akinyemi IA, et al. 2015. Complete genome sequence of a novel velarivirus infecting areca palm in China. Archives of Virology 160:2367−70

doi: 10.1007/s00705-015-2489-9
[15]

Yang K, Yan H, Song L, Jin P, Miao W, et al. 2018. Analysis of the complete genome sequence of a potyvirus from passion fruit suggests its taxonomic classification as a member of a new species. Archives of Virology 163:2583−86

doi: 10.1007/s00705-018-3885-8
[16]

Yang K, Shen W, Li Y, Li Z, Miao W, et al. 2019. Areca palm necrotic ringspot virus, classified within a recently proposed genus 'Arepavirus' of the family Potyviridae, is associated with necrotic ringspot disease in areca palm. Phytopathology 109:887−94

doi: 10.1094/PHYTO-06-18-0200-R
[17]

Zhang H, Zhao X, Cao X, Khan LU, Zhao R, et al. 2022. Transmission of areca palm velarivirus 1 by mealybugs causes yellow leaf disease in betel palm (Areca catechu). Phytopathology 112:700−7

doi: 10.1094/PHYTO-06-21-0261-R
[18]

Wang H, Zhao R, Zhang H, Cao X, Li Z, et al. 2020. Prevalence of yellow leaf disease (YLD) and its associated areca palm velarivirus 1 (APV1) in betel palm (Areca catechu) plantations in Hainan, China. Plant Disease 104:2556−62

doi: 10.1094/PDIS-01-20-0140-RE
[19]

Cao X, Zhao R, Wang H, Zhang H, Zhao X, et al. 2021. Genomic diversity of Areca Palm Velarivirus 1 (APV1) in Areca palm (Areca catechu) plantations in Hainan, China. BMC Genomics 22:725

doi: 10.1186/s12864-021-07976-6
[20]

Li Y, Cheng L, Peng Z, Ju R, Wan F. 2007. [Effects of host plants on development and fecundity of Brontispa longissima (Gestro)]. Chinese Journal of Applied Ecology 18:2050−4

[21]

Zhong B, Lv C, Qin W. 2017. Effect of temperature on the population growth of Tirathaba rufivena (Lepidoptera: Pyralidae) on Areca catechu (Arecaceae). Florida Entomologist 100:578−82

doi: 10.1653/024.100.0314
[22]

Raghavan V, Baruah HK. 1958. Arecanut: India’s popular masticatory — history, chemistry and utilization. Economic Botany 12:315−45

doi: 10.1007/BF02860022
[23]

Rawther T. 1982. Yellow leaf disease of arecanut. Indian Cocoa Arecanut and Spices Journal 6:41−42

[24]

Yu H, Feng S, Zheng J. 1986. Research report on "yellow leaf disease" of areca palm in Hainan Island. Chinese Journal of Tropical Agriculture 3:45−49

[25]

Menon R. 1963. Transmission of Yellow Leaf Disease. Journal of Phytopathology 48:82−88

doi: 10.1111/j.1439-0434.1963.tb02106.x
[26]

Nayar R, Seliskar CE. 1978. Mycoplasma like organisms associated with yellow leaf disease of Areca catechu L. European Journal of Forest Pathology 8:125−28

doi: 10.1111/j.1439-0329.1978.tb00625.x
[27]

Ponnamma KN. 1993. Studies on proutista moesta westwood: population dynamics, control and role as a vector df yellow leaf disease of arecanut. Dissertation. University OF Kerala, India

[28]

Manimekalai R, Soumya VP, Sathish Kumar R, Selvarajan R, Reddy K, et al. 2010. Molecular detection of 16SrXI group phytoplasma associated with root (wilt) disease of coconut (Cocos nucifera) in India. Plant Disease 94:636−36

doi: 10.1094/PDIS-94-5-0636B
[29]

Xu G, Qiu F, Li X, Zheng FQ, Zheng L, et al. 2020. Diaporthe limonicola causing leaf spot disease on Areca catechu in China. Plant Disease 12:1869−69

doi: 10.1094/pdis-11-19-2324-pdn
[30]

Yang K, Ran M, Li Z, Hu M, Zheng L, et al. 2018. Analysis of the complete genomic sequence of a novel virus, areca palm necrotic spindle-spot virus, reveals the existence of a new genus in the family Potyviridae. Archives of Virology 163:3471−75

doi: 10.1007/s00705-018-3980-x
[31]

Jin KX, Sun FS, Chen MR, Luo DQ, Tsai JH. 1995. Yellows disease of betel nut palm in Hainan, China. Scientia Silvae Sinicae 6:556−58

[32]

Doi Y, Teranaka M, Yora K, Asuyama H. 1967. Mycoplasma- or PLT group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches' broom, aster yellows, or paulownia witches' broom. Japanese Journal of Phytopathology 33:259−66

doi: 10.3186/jjphytopath.33.259
[33]

Hogenhout SA, Oshima K, Ammar ED, Kakizawa S, Kingdom HN, et al. 2008. Phytoplasmas: bacteria that manipulate plants and insects. Molecular Plant Pathology 9:403−23

doi: 10.1111/j.1364-3703.2008.00472.x
[34]

Nair S, Roshna OM, Soumya VP, Hegde V, Suresh Kumar M, et al. 2014. Real-time PCR technique for detection of arecanut yellow leaf disease phytoplasma. Australasian Plant Pathology 43:527−29

doi: 10.1007/s13313-014-0278-7
[35]

Ishiie T, Doi Y, Yora K, Asuyama H. 1967. Suppressive effects of antibiotics of tetracycline group on symptom developement of mulberry dwarf disease. Japanese Journal of Phytopathology 33:267−75

doi: 10.3186/jjphytopath.33.267
[36]

Rajeev G. 2003. Studies on the phytoplasmal etiology of yellow leaf disease of arecanut (Areca catechu L. ). University of Kerala, India. 160 pp.

[37]

Jiang YP, Chen TA. 1987. Purification of Mycoplasma-like organisms from lettuce with aster yellows disease. Phytopathology 77:949−53

doi: 10.1094/Phyto-77-949
[38]

Zhou Y, Gan B, Zhang Z, Sui C, Wei J, et al. 2010. Detection of the phytoplasmas associated with yellow leaf disease of Areca catechu L. Hainan province of China by nested PCR. Chinese Agricultural Science Bulletin 26:381−84

[39]

Rajeev G, Prakash VR, Vaganan MM, Sasikala M, Solomon JJ, et al. 2011. Microscopic and polyclonal antibody-based detection of yellow leaf disease of arecanut (Areca catechu L.). Archives of Phytopathology and Plant Protection 44:1093−104

doi: 10.1080/03235408.2010.482402
[40]

Nair S, Manimekalai R, Ganga Raj P, Hegde V. 2016. Loop mediated isothermal amplification (LAMP) assay for detection of coconut root wilt disease and arecanut yellow leaf disease phytoplasma. Journal of Microbiology & Biotechnology 32:108

doi: 10.1007/s11274-016-2078-4
[41]

Bertaccini A, Duduk B, Paltrinieri S, Contaldo N. 2014. Phytoplasmas and Phytoplasma Diseases: A Severe Threat to Agriculture. American Journal of Plant Sciences 5:1763−88

[42]

Contaldo N, Sciovolone A, Barbieri C, Quadri AD, Bertaccini A. 2021. Multilocus typing of aster yellows phytoplasmas infecting lettuce with yellowing in Calabria, Italy. Phytopathogenic Mollicutes 11:105−11

doi: 10.5958/2249-4677.2021.00017.7
[43]

Ćurčić Ž, Kosovac A, Stepanović J, Rekanović E, Kube M, et al. 2021. Multilocus Genotyping of 'Candidatus Phytoplasma solani' Associated with Rubbery Taproot Disease of Sugar Beet in the Pannonian Plain. Microorganisms 9:1950

doi: 10.3390/microorganisms9091950
[44]

Muddumadiah C, Madhupriya, Kumar S, Manimekalai R, Rao GP. 2014. Detection and characterization of 16SrI-B phytoplasmas associated with yellow leaf disease of arecanut palm in India. Phytopathogenic Mollicutes 4:77−82

doi: 10.5958/2249-4677.2014.00585.4
[45]

Che HY, Wu CT, Fu RY, Wen YS, Ye SB, Luo DQ. 2010. Molecular identification of pathogens from arecanut yellow leaf disease in Hainan. Chinese J Trop Crops 31:83−87

[46]

Abeysinghe S, Abeysinghe PD, Kanatiwela-de Silva C, Udagama P, Warawichanee K, et al. 2016. Refinement of the taxonomic structure of 16SrXI and 16SrXIV phytoplasmas of gramineous plants using multilocus sequence typing. Plant Disease 100:2001−10

doi: 10.1094/PDIS-02-16-0244-RE
[47]

Bertaccini A, Arocha-Rosete Y, Contaldo N, Duduk B, Fiore N, et al. 2022. Revision of the 'Candidatus Phytoplasma' species description guidelines. International Journal of Systematic and Evolutionary Microbiology 72:e5353

doi: 10.1099/ijsem.0.005353
[48]

Wei W, Zhao Y. 2022. Phytoplasma Taxonomy: Nomenclature, Classification, and Identification. Biology 11:1119

doi: 10.3390/biology11081119
[49]

Wei W, Shao J, Bottner-Parker KD, Zhao Y. 2022. Draft genome sequence resource of CBPPT1, a 'Candidatus Phytoplasma trifolii'-related strain associated with potato purple top disease in the Columbia Basin, U.S.A. Plant Disease 107:922−25

doi: 10.1094/PDIS-08-22-1788-A
[50]

Wright AA, Harper SJ. 2022. Draft genome sequence of a Washington isolate of "Candidatus Phytoplasma pruni". Microbiology Resource Announcements 11:e0079022

doi: 10.1128/mra.00790-22
[51]

Nejat N, Sijam K, Abdullah SNA, Vadamalai G, Dickinson M. 2009. Phytoplasmas associated with disease of coconut in Malaysia: phylogenetic groups and host plant species. Plant Pathology 58:1152−60

doi: 10.1111/j.1365-3059.2009.02153.x
[52]

Perera L, Meegahakumbura M, Wijesekara H, Fernando W, Dickinson J. 2012. A phytoplasma is associated with the Waligama coconut leaf wilt disease in Sri Lanka. Journal of Plant Pathology 94:205−9

[53]

Gottwald TR. 2010. Current epidemiological understanding of citrus Huanglongbing. Annual Review of Phytopathology 48:119−39

doi: 10.1146/annurev-phyto-073009-114418
[54]

Alquézar B, Carmona L, Bennici S, Miranda MP, Bassanezi RB, et al. 2022. Cultural Management of Huanglongbing: Current Status and Ongoing Research. Phytopathology 112:11−25

doi: 10.1094/PHYTO-08-21-0358-IA
[55]

Duan Y, Zhou L, Hall DG, Li W, Doddapaneni H, et al. 2009. Complete genome sequence of citrus huanglongbing bacterium, 'Candidatus Liberibacter asiaticus' obtained through metagenomics. Molecular Plant-Microbe Interactions 22:1011−20

doi: 10.1094/MPMI-22-8-1011
[56]

Wang N. 2021. A promising plant defense peptide against citrus Huanglongbing disease. PNAS 118:e2026483118

doi: 10.1073/pnas.2026483118
[57]

Ponnamma KN, Solomon JJ, Rajeev G, Govindankutty MP, Karnavar GK. 1997. Evidences for transmission of yellow leaf disease of areca palm, Areca catechu L. by Proutista moesta (Westwood) (Homoptera:Derbidae). Journal of Plantation Crops 25:197−200

[58]

Purushothama CRA, Ramanayaka JG, Sano T, Casati P, Bianco PA. 2007. Are phytoplasmas the etiological agent of yellow leaf disease of Areca catechu in India? Bulletin of Insectology 60:413−14

[59]

Karasev AV. 2000. Genetic diversity and evolution of closteroviruses. Annual Review of Phytopathology 38:293−324

doi: 10.1146/annurev.phyto.38.1.293
[60]

Jelkmann W, Mikona C, Turturo C, Navarro B, Rott ME, et al. 2012. Molecular characterization and taxonomy of grapevine leafroll-associated virus 7. Archives of Virology 157:359−62

doi: 10.1007/s00705-011-1176-8
[61]

Dolja VV, Kreuze JF, Valkonen JP. 2006. Comparative and functional genomics of closteroviruses. Virus Research 117:38−51

doi: 10.1016/j.virusres.2006.02.002
[62]

Rubio L, Guerri J, Moreno P. 2013. Genetic variability and evolutionary dynamics of viruses of the family Closteroviridae. Frontiers in Microbiology 4:151

doi: 10.3389/fmicb.2013.00151
[63]

Melzer MJ, Sether DM, Borth WB, Mersino EF, Hu JS. 2011. An assemblage of closteroviruses infects Hawaiian ti (Cordyline fruticosa L.). Virus Genes 42:254−60

doi: 10.1007/s11262-010-0537-9
[64]

Al Rwahnih M, Dolja VV, Daubert S, Koonin EV, Rowhani A. 2012. Genomic and biological analysis of Grapevine leafroll-associated virus 7 reveals a possible new genus within the family Closteroviridae. Virus Research 163:302−9

doi: 10.1016/j.virusres.2011.10.018
[65]

Lim S, Igori D, Yoo RH, Zhao F, Cho IS, et al. 2015. Genomic detection and characterization of a Korean isolate of Little cherry virus 1 sampled from a peach tree. Virus Genes 51:260−6

doi: 10.1007/s11262-015-1225-6
[66]

Ng JCK, Falk BW. 2006. Virus-vector interactions mediating nonpersistent and semipersistent transmission of plant viruses. Annu Rev Phytopathol 44:183−212

doi: 10.1146/annurev.phyto.44.070505.143325
[67]

Naidu RA, Maree HJ, Burger JT. 2015. Grapevine leafroll disease and associated viruses: a unique pathosystem. Annual Review of Phytopathology 53:613−34

doi: 10.1146/annurev-phyto-102313-045946
[68]

Brewer HC, Hird DL, Bailey AM, Seal SE, Foster GD. 2018. A guide to the contained use of plant virus infectious clones. Plant Biotechnology Journal 16:832−43

doi: 10.1111/pbi.12876
[69]

Pasin F, Menzel W, Daròs JA. 2019. Harnessed viruses in the age of metagenomics and synthetic biology: an update on infectious clone assembly and biotechnologies of plant viruses. Plant Biotechnology Journal 17:1010−26

doi: 10.1111/pbi.13084
[70]

Goszczynski DE, Kasdorf GGF, Pietersen G, van Tonder H. 1996. Grapevine leafroll-associated virus 2 (GLRaV-2)- mechanical transmission, purification, production and properties of antisera, detection by ELISA. South African Journal for Enology & Viticulture 17:15−26

doi: 10.21548/17-1-2253
[71]

Lindbo JA, Falk BW. 2017. The Impact of "Coat Protein-Mediated Virus Resistance" in Applied Plant Pathology and Basic Research. Phytopathology 107:624−34

doi: 10.1094/PHYTO-12-16-0442-RVW
[72]

Abel PP, Nelson RS, De B, Hoffmann N, Rogers SG, et al. 1986. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738−43

doi: 10.1126/science.3457472
[73]

Cuozzo M, O'Connell KM, Kaniewski W, Fang R, Chua NH, et al. 1988. Viral protection in transgenic tobacco plants expressing the cucumber mosaic virus coat protein or its antisense RNA. Bio/Technology 6:549−57

doi: 10.1038/nbt0588-549
[74]

Lawson C, Kaniewski W, Haley L, Rozman R, Newell C, et al. 1990. Engineering resistance to mixed virus infection in a commercial potato cultivar: resistance to potato virus X and potato virus Y in transgenic Russet Burbank. Bio/Technology 8:127−34

doi: 10.1038/nbt0290-127
[75]

Kawchuk LM, Martin RR, McPherson J. 1990. Resistance in transgenic potato expressing the potato leafroll virus coat protein gene. Molecular Plant-Microbe Interactions 3:301−7

doi: 10.1094/MPMI-3-301
[76]

Fuchs M, Gonsalves D. 2007. Safety of virus-resistant transgenic plants two decades after their introduction: lessons from realistic field risk assessment studies. Annual Review of Phytopathology 45:173−202

doi: 10.1146/annurev.phyto.45.062806.094434
[77]

Kaniewski WK, Thomas PE. 2004. The potato story. AgBioForum 7:41−46

[78]

Fitch MMM. 2016. Update on gene transfer biotechnology of papaya. Acta Horticulturae 111:7−18

doi: 10.17660/actahortic.2016.1111.2
[79]

Scorza R, Callahan A, Dardick C, Ravelonandro M, Polak J, et al. 2013. Genetic engineering of Plum pox virus resistance: ‘HoneySweet’ plum from concept to product. Plant Cell, Tissue and Organ Culture 115:1−12

doi: 10.1007/s11240-013-0339-6
[80]

Carbonell A. 2019. Design and high-throughput generation of artificial small RNA constructs for plants. Plant microRNAs 1932:247−60

doi: 10.1007/978-1-4939-9042-9_19
[81]

Carbonell A, Daròs JA. 2017. Artificial microRNAs and synthetic trans-acting small interfering RNAs interfere with viroid infection. Molecular Plant Pathology 18:746−53

doi: 10.1111/mpp.12529
[82]

Carbonell A, Daros JA. 2019. Design, synthesis, and functional analysis of highly specific artificial small RNAs with antiviral activity in plants. In Antiviral Resistance in Plants. Methods in Molecular Biology, eds. Kobayashi K, Nishiguchi M. vol 2028. New York: Humana. pp. 231−46. https://doi.org/10.1007/978-1-4939-9635-3_13

[83]

Carbonell A, Fahlgren N, Mitchell S, Cox KL Jr, Reilly KC, et al. 2015. Highly specific gene silencing in a monocot species by artificial microRNAs derived from chimeric miRNA precursors. The Plant Journal 82:1061−75

doi: 10.1111/tpj.12835
[84]

Zhang Y, Malzahn AA, Sretenovic S, Qi Y. 2019. The emerging and uncultivated potential of CRISPR technology in plant science. Nature Plants 5:778−94

doi: 10.1038/s41477-019-0461-5
[85]

Zhang T, Zheng Q, Yi X, An H, Zhao Y, et al. 2018. Establishing RNA virus resistance in plants by harnessing CRISPR immune system. Plant Biotechnology Journal 16:1415−23

doi: 10.1111/pbi.12881
[86]

Zhang T, Zhao Y, Ye J, Cao X, Xu C, et al. 2019. Establishing CRISPR/Cas13a immune system conferring RNA virus resistance in both dicot and monocot plants. Plant Biotechnology Journal 17:1185−87

doi: 10.1111/pbi.13095
[87]

Taki A, Yamagishi N, Yoshikawa N. 2013. Development of apple latent spherical virus-based vaccines against three tospoviruses. Virus Research 176:251−58

doi: 10.1016/j.virusres.2013.06.015