[1]

Jourquin J, Fukaki H, Beeckman T. 2020. Peptide-receptor signaling controls lateral root development. Plant Physiology 182:1645−56

doi: 10.1104/pp.19.01317
[2]

Overvoorde P, Fukaki H, Beeckman T. 2010. Auxin control of root development. Cold Spring Harbor Perspectives in Biology 2:a1537

doi: 10.1101/cshperspect.a001537
[3]

Petricka JJ, Winter CM, Benfey PN. 2012. Control of Arabidopsis root development. Annual Review of Plant Biology 63:563−90

doi: 10.1146/annurev-arplant-042811-105501
[4]

Czyzewicz N, Shi C, Vu LD, Van De Cotte B, Hodgman C, et al. 2015. Modulation of Arabidopsis and monocot root architecture by CLAVATA3/EMBRYO SURROUNDING REGION 26 peptide. Journal of Experimental Botany 66:5229−43

doi: 10.1093/jxb/erv360
[5]

Lee Y, Bak G, Choi Y, Chuang W, Cho H, et al. 2008. Roles of phosphatidylinositol 3-kinase in root hair growth. Plant Physiology 147:624−35

doi: 10.1104/pp.108.117341
[6]

Lin Q, Ohashi Y, Kato M, Tsuge T, Gu H, et al. 2015. GLABRA2 directly suppresses basic helix-loop-helix transcription factor genes with diverse functions in root hair development. The Plant Cell 27:2894−906

doi: 10.1105/tpc.15.00607
[7]

Schiefelbein JW, Somerville C. 1990. Genetic control of root hair development in Arabidopsis thaliana. The Plant Cell 2:235−43

doi: 10.2307/3869138
[8]

Feng Y, Xu P, Li B, Li P, Wen X, et al. 2017. Ethylene promotes root hair growth through coordinated EIN3/EIL1 and RHD6/RSL1 activity in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 114:13834−39

doi: 10.1073/pnas.1711723115
[9]

Kazan K, Manners JM. 2013. MYC2: the master in action. Molecular Plant 6:686−703

doi: 10.1093/mp/sss128
[10]

Gao S, Li C, Chen X, Li S, Liang N, et al. 2023. Basic helix-loop-helix transcription factor PxbHLH02 enhances drought tolerance in Populus (Populus simonii × P. nigra). Tree Physiology 43:185−202

doi: 10.1093/treephys/tpac107
[11]

Arifuzzaman M, Horvath D, Rahman M. 2022. Transcriptome analysis suggests cytokinin and gibberellin signaling may account for differences between spring and winter canola (Brassica napus L.) root development. Journal of Plant Biology 65:531−47

doi: 10.1007/s12374-020-09270-6
[12]

Hong CP, Kim J, Lee J, Yoo S, Bae W, et al. 2021. Gibberellin signaling promotes the secondary growth of storage roots in Panax ginseng. International Journal of Molecular Sciences 22:8694

doi: 10.3390/ijms22168694
[13]

Inada S, Shimmen T. 2001. Involvement of cortical microtubules in plastic extension regulated by gibberellin in Lemna minor root. Plant & Cell Physiology 42:395−403

doi: 10.1093/pcp/pce049
[14]

Singh V, Sergeeva L, Ligterink W, Aloni R, Zemach H, et al. 2019. Gibberellin promotes sweetpotato root vascular lignification and reduces storage-root formation. Frontiers in Plant Science 10:1320

doi: 10.3389/fpls.2019.01320
[15]

Albertos P, Wlk T, Griffiths J, Pimenta Lange MJ, Unterholzner SJ, et al. 2022. Brassinosteroid-regulated bHLH transcription factor CESTA induces the gibberellin 2-oxidase GA2ox7. Plant Physiology 188:2012−25

doi: 10.1093/plphys/kiac008
[16]

Liu W, Tai H, Li S, Gao W, Zhao M, et al. 2014. bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism. New Phytologist 201:1192−204

doi: 10.1111/nph.12607
[17]

Li F, Guo S, Zhao Y, Chen D, Chong K, et al. 2010. Overexpression of a homopeptide repeat-containing bHLH protein gene (OrbHLH001) from Dongxiang Wild Rice confers freezing and salt tolerance in transgenic Arabidopsis. Plant Cell Reports 29:977−86

doi: 10.1007/s00299-010-0883-z
[18]

Liu Y, Ji X, Nie X, Qu M, Zheng L, et al. 2015. Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs. New Phytologist 207:692−709

doi: 10.1111/nph.13387
[19]

Carretero-Paulet L, Galstyan A, Roig-Villanova I, Martínez-García JF, Bilbao-Castro JR, et al. 2010. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae. Plant Physiology 153:1398−412

doi: 10.1104/pp.110.153593
[20]

Chang WH, Lai AG. 2018. Genome-wide analyses of the bHLH superfamily in crustaceans: reappraisal of higher-order groupings and evidence for lineage-specific duplications. Royal Society Open Science 5:172433

doi: 10.1098/rsos.172433
[21]

Yu J, Ai G, Shen D, Chai C, Jia Y, et al. 2019. Bioinformatical analysis and prediction of Nicotiana benthamiana bHLH transcription factors in Phytophthora parasitica resistance. Genomics 111:473−82

doi: 10.1016/j.ygeno.2018.03.005
[22]

Sun X, Wang Y, Sui N. 2018. Transcriptional regulation of bHLH during plant response to stress. Biochemical and Biophysical Research Communications 503:397−401

doi: 10.1016/j.bbrc.2018.07.123
[23]

Massari ME, Murre C. 2000. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Molecular and Cellular Biology 20:429−40

doi: 10.1128/MCB.20.2.429-440.2000
[24]

Zhao Q, Xiang X, Liu D, Yang A, Wang Y. 2018. Tobacco transcription factor NtbHLH123 confers tolerance to cold stress by regulating the NtCBF pathway and reactive oxygen species homeostasis. Frontiers in Plant Science 9:381

doi: 10.3389/fpls.2018.00381
[25]

Zhang T, Lv W, Zhang H, Ma L, Li P, et al. 2018. Genome-wide analysis of the basic helix-loop-helix (bHLH) transcription factor family in maize. BMC Plant Biology 18:235

doi: 10.1186/s12870-018-1441-z
[26]

Lee S, Lee S, Yang K, Kim Y, Park S, et al. 2006. Overexpression of PRE1 and its homologous genes activates gibberellin-dependent responses in Arabidopsis thaliana. Plant and Cell Physiology 47:591−600

doi: 10.1093/pcp/pcj026
[27]

Ikeda M, Fujiwara S, Mitsuda N, Ohme-Takagi M. 2012. A triantagonistic basic Helix-Loop-Helix system regulates cell elongation in Arabidopsis. The Plant Cell 24:4483−97

doi: 10.1105/tpc.112.105023
[28]

Hou Q, Zhao W, Lu L, Wang L, Zhang T, et al. 2022. Overexpression of HLH4 inhibits cell elongation and anthocyanin biosynthesis in Arabidopsis thaliana. Cells 11:1087

doi: 10.3390/cells11071087
[29]

Cheng H, Liu J, Zhou M, Cheng Y. 2022. Lectin affinity-based glycoproteome analysis of the developing xylem in poplar. Forestry Research 2:13

doi: 10.48130/FR-2022-0013
[30]

Sun P, Jia H, Zhang Y, Li J, Lu M, et al. 2019. Deciphering genetic architecture of adventitious root and related shoot traits in Populus using QTL mapping and RNA-Seq data. International Journal of Molecular Sciences 20:6114

doi: 10.3390/ijms20246114
[31]

Tamura K, Stecher G, Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution 38:3022−27

doi: 10.1093/molbev/msab120
[32]

Wen S, Ge X, Wang R, Yang H, Bai Y, et al. 2022. An efficient Agrobacterium-mediated transformation method for hybrid poplar 84K (Populus alba × P. glandulosa) using calli as explants. International Journal of Molecular Sciences 23:2216

doi: 10.3390/ijms23042216
[33]

Chan Z, Grumet R, Loescher W. 2011. Global gene expression analysis of transgenic, mannitol-producing, and salt-tolerant Arabidopsis thaliana indicates widespread changes in abiotic and biotic stress-related genes. Journal of Experimental Botany 62:4787−803

doi: 10.1093/jxb/err130
[34]

Liu J, Shen Y, Cao H, He K, Chu Z, et al. 2022. OsbHLH057 targets the AATCA cis-element to regulate disease resistance and drought tolerance in rice. Plant Cell Reports 41:1285−99

doi: 10.1007/s00299-022-02859-w
[35]

Song Y, Li S, Sui Y, Zheng H, Han G, et al. 2022. SbbHLH85, a bHLH member, modulates resilience to salt stress by regulating root hair growth in sorghum. Theoretical and Applied Genetics 135:201−16

doi: 10.1007/s00122-021-03960-6
[36]

Verma D, Jalmi SK, Bhagat PK, Verma N, Sinha AK. 2020. A bHLH transcription factor, MYC2, imparts salt intolerance by regulating proline biosynthesis in Arabidopsis. The Febs Journal 287:2560−76

doi: 10.1111/febs.15157
[37]

Wei S, Xia R, Chen C, Shang X, Ge F, et al. 2021. ZmbHLH124 identified in maize recombinant inbred lines contributes to drought tolerance in crops. Plant Biotechnology Journal 19:2069−81

doi: 10.1111/pbi.13637
[38]

Yu Z, Duan X, Luo L, Dai S, Ding Z, et al. 2020. How plant hormones mediate salt stress responses. Trends in Plant Science 25:1117−30

doi: 10.1016/j.tplants.2020.06.008
[39]

Bai M, Fan M, Oh E, Wang Z. 2012. A triple helix-loop-helix/basic helix-loop-helix cascade controls cell elongation downstream of multiple hormonal and environmental signaling pathways in Arabidopsis. The Plant Cell 24:4917−29

doi: 10.1105/tpc.112.105163
[40]

Achard P, Genschik P. 2009. Releasing the brakes of plant growth: how GAs shutdown DELLA proteins. Journal of Experimental Botany 60:1085−92

doi: 10.1093/jxb/ern301
[41]

Binenbaum J, Weinstain R, Shani E. 2018. Gibberellin localization and transport in plants. Trends in Plant Science 23:410−21

doi: 10.1016/j.tplants.2018.02.005
[42]

Hedden P, Sponsel V. 2015. A century of gibberellin research. Journal of Plant Growth Regulation 34:740−60

doi: 10.1007/s00344-015-9546-1
[43]

MacMillan J. 2001. Occurrence of gibberellins in vascular plants, fungi, and bacteria. Journal of Plant Growth Regulation 20:387−442

doi: 10.1007/s003440010038
[44]

Li T, Shi Y, Zhu B, Zhang T, Feng Z, et al. 2020. Genome-wide identification of apple atypical bHLH subfamily PRE members and functional characterization of MdPRE4.3 in response to abiotic stress. Frontiers in Genetics 13:846559

doi: 10.3389/fgene.2022.846559
[45]

Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K. 2008. The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. The Plant Journal 56:613−26

doi: 10.1111/j.1365-313X.2008.03627.x
[46]

Shan C, Mei Z, Duan J, Chen H, Feng H, et al. 2014. OsGA2ox5, a gibberellin metabolism enzyme, is involved in plant growth, the root gravity response and salt stress. PLoS ONE 9:e87110

doi: 10.1371/journal.pone.0087110
[47]

Koramutla MK, Tuan PA, Ayele BT. 2022. Salicylic acid enhances adventitious root and aerenchyma formation in wheat under waterlogged wonditions. International Journal of Molecular Sciences 23:1243

doi: 10.3390/ijms23031243
[48]

Bagautdinova ZZ, Omelyanchuk N, Tyapkin AV, Kovrizhnykh VV, Lavrekha VV,et al. 2022. Salicylic acid in root growth and development. International Journal of Molecular Sciences 23:2228

doi: 10.3390/ijms23042228
[49]

Porco S, Larrieu A, Du Y, Gaudinier A, Goh T, et al. 2016. Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3. Development 143:3340−49

doi: 10.1242/dev.136283
[50]

Rinaldi MA, Liu J, Enders TA, Bartel B, Strader LC. 2012. A gain-of-function mutation in IAA16 confers reduced responses to auxin and abscisic acid and impedes plant growth and fertility. Plant Molecular Biology 79:359−73

doi: 10.1007/s11103-012-9917-y
[51]

Wang L, Hua D, He J, Duan Y, Chen Z, et al. 2011. Auxin Response Factor2 (ARF2) and its regulated homeodomain gene HB33 mediate abscisic acid response in Arabidopsis. PLoS Genetics 7:e1002172

doi: 10.1371/journal.pgen.1002172
[52]

Sax K. 1923. The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8:552−60

doi: 10.1093/genetics/8.6.552
[53]

Zhang Y, Liu M, He J, Wang Y, Xing G, et al. 2015. Marker-assisted breeding for transgressive seed protein content in soybean [Glycine max (L.) Merr.]. Theoretical and Applied Genetics 128:1061−72

doi: 10.1007/s00122-015-2490-4
[54]

Chen T, Chen X, Zhang S, Zhu J, Tang B, et al. 2021. The genome sequence archive family: toward explosive data growth and diverse data types. Genomics, Proteomics & Bioinformatics 19:578−83

doi: 10.1016/j.gpb.2021.08.001
[55]

Xue Y, Bao Y, Zhang Z, Zhao W, Xiao J, et al. 2022. Database resources of the National Genomics Data Center, China National Center for Bioinformation in 2022. Nucleic Acids Research 50:D27−D38

doi: 10.1093/nar/gkab951