[1] |
Takayama S, Akita M. 2008. Bioengineering aspects of bioreactor application in plant propagation. In Plant Tissue Culture Engineering, eds. Gupta, SD, Ibaraki Y. Dordrecht, Netherlands: Springer. pp. 83−100. https://doi.org/10.1007/978-1-4020-3694-1_5 |
[2] |
Mehrotra S, Goel MK, Kukreja AK, Mishra BN. 2007. Efficiency of liquid culture systems over conventional micropropagation: A progress towards commercialization. African Journal of Biotechnology 6(13):1484−92 |
[3] |
Preil W. 1991. Application of bioreactors in plant propagation. In Micropropagation, eds. Debergh PC, Zimmerman RH. Dordrecht, Netherlands: Springer. pp. 425–45. https://doi.org/10.1007/978-94-009-2075-0_25 |
[4] |
Preil W. 2005. General introduction: a personal reflection on the use of liquid media for in vitro culture. In Liquid Culture Systems for in Vitro Plant Propagation, eds. Hvolslef-Eide AK, Preil W. Dordrecht, Netherlands: Springer. pp. 1–18. https://doi.org/10.1007/1-4020-3200-5_1 |
[5] |
Georgiev V, Schumann A, Pavlov A, Bley T. 2014. Temporary immersion systems in plant biotechnology. Engineering in Life Sciences 14(6):607−21 doi: 10.1002/elsc.201300166 |
[6] |
Grigoriado, K, Vasilakakis M, Tzoulis T, Eleftheriou EP. 2005. Experimental use of a novel temporary immersion system for liquid culture of olive microshoots. In Liquid Culture Systems for in Vitro Plant Propagation, eds. Hvolslef-Eide AK, Preil W. Dordrecht, Netherlands: Springer. pp. 263−74. https://doi.org/10.1007/1-4020-3200-5_18 |
[7] |
Hanhineva K, Kokko H, Kärenlampi S. 2005. Shoot regeneration from leaf explants of five strawberry (Fragaria× ananassa) cultivars in temporary immersion bioreactor system. In Vitro Cellular & Developmental Biology - Plant 41(6):826−31 doi: 10.1079/IVP2005714 |
[8] |
Sivakumar G, Kim SJ, Hahn EJ, Paek KY. 2005. Optimizing environmental factors for large-scale multiplication of chrysanthemum (Chrysanthemum grandiflorum) in balloon-type bioreactor culture. In Vitro Cellular & Developmental Biology - Plant 41(6):822−25 doi: 10.1079/IVP2005705 |
[9] |
Chakrabarty D, Dewir YH, Hahn EJ, Datta SK, Paek KY. 2007. The dynamics of nutrient utilization and growth of apple root stock 'M9 EMLA' in temporary versus continuous immersion bioreactors. Plant Growth Regulation 51(1):11−19 doi: 10.1007/s10725-006-9115-5 |
[10] |
Afreen F. 2008. Temporary immersion bioreactor, In Plant Tissue Culture Engineering, eds. Gupta SD, Ibaraki Y. Dordrecht, Netherlands: Springer. pp. 187−201. https://doi.org/10.1007/978-1-4020-3694-1_11 |
[11] |
Schumann A, Berkov S, Claus D, Gerth A, Bastida J, et al. 2012. Production of galanthamine by Leucojum aestivum shoots grown in different bioreactor systems. Applied Biochemistry and Biotechnology, 167(7):1907−20 doi: 10.1007/s12010-012-9743-3 |
[12] |
Wang SM, Piao XC, Park SY, Lian ML. 2013. Improved micropropagation of Gypsophila paniculata with bioreactor and factors affecting ex vitro rooting in microponic system. In Vitro Cellular & Developmental Biology - Plant 49(1):70−78 doi: 10.1007/s11627-012-9464-x |
[13] |
Golle DP, Koefender J, Camera JN, Kaiper C, Horn RC. 2019. Temporary immersion bioreactors: cultivation of sweet potato from meristems. In Micropropagation: Methods and Effects, eds. Stefenon VM. Hauppauge, NY, USA: Nova Science Publishers. |
[14] |
Benelli C, De Carlo A. 2018. In vitro multiplication and growth improvement of Olea europaea L. cv Canino with temporary immersion system (Plantform™). 3 Biotech 8(7):317 doi: 10.1007/s13205-018-1346-4 |
[15] |
Engi̇n PS, Mert C. 2020. The effects of harvesting time on the physicochemical components of Aronia berry. Turkish Journal of Agriculture and Forestry 44:361−70 doi: 10.3906/tar-1903-130 |
[16] |
Almokar HMM, Pırlak L. 2018. Propagation of Aronia (Aronia melanocarpa) with tissue culture Selcuk Univer. Journal of Agricultural and Food Sciences 32(3):549−58 doi: 10.15316/sjafs.2018.136 |
[17] |
Khan S, Naz S, Saeed B. 2004. In vitro production of Cordyline terminalis for commercialization. Pakistan Journal of Botany 36(4):757−61 |
[18] |
Ray T, Saha P, Roy SC. 2006. Commercial production of Cordyline terminalis (L) Kunth. from shoot apex meristem and assessment for genetic stability of somaclones by isozyme markers. Scientia Horticulturae 108(3):289−94 doi: 10.1016/j.scienta.2006.01.028 |
[19] |
Ray T, Saha P, Roy SC. 2012. Micropropagation of Cordyline terminalis. In Protocols for Micropropagation of Selected Economically-Important Horticultural Plants, eds. Lambardi M, Ozudogru E, Jain S. Totowa, NJ: Humana Press. pp. 269−77. https://doi.org/10.1007/978-1-62703-074-8_21 |
[20] |
Dewir YH, Chakrabarty D, Hahn EJ, Paek KY. 2006. A simple method for mass propagation of Spathiphyllum cannifolium using an airlift bioreactor. In Vitro Cellular & Developmental Biology - Plant 42(3):291−97 doi: 10.1079/IVP2006764 |
[21] |
Kaçar YA, Donmez D, Biçen B, Erol BM, Şimşek Ö, et al. 2020. Micropropagation of Spathiphyllum with temporary immersion bioreactor system. Turkish Journal of Agriculture - Food Science and Technology 8(5):1195−200 doi: 10.24925/turjaf.v8i5.1195-1200.3364 |
[22] |
Takayama S, Akita M. 2005. Practical aspects of bioreactor application in mass propagation of plants. In Liquid Culture Systems for in Vitro Plant Propagation, eds. Hvolslef-Eide AK, Preil W. Dordrecht, Netherlands: Springer. pp. 61−78. https://doi.org/10.1007/1-4020-3200-5_4 |
[23] |
Welander M, Persson J, Asp H, Zhu LH. 2014. Evaluation of a new vessel system based on temporary immersion system for micropropagation. Scientia Horticulturae 179:227−232 doi: 10.1016/j.scienta.2014.09.035 |
[24] |
Umarusman MA, Aka Kaçar Y. 2018. Micropropagation of different carob (Ceratonia siliqua L.) genotypes by classical and new generation tissue culture techniques. Research Journal of Agricultural Sciences (Tarım Bilimleri Araştırma Dergisi) 11(2):37−44 |
[25] |
Scherer PA. 1988. Standardization of plant micropropagation by usage of a liquid medium with polyurethane foam plugs or a solidified medium with the gellan gum gelrite instead of agar. Acta Horticulturae 226:107−14 doi: 10.17660/actahortic.1988.226.10 |
[26] |
Abdalla N, El-Ramady H, Seliem MK, El-Mahrouk ME, Taha N, et al. 2022. An academic and technical overview on plant micropropagation challenges. Horticulturae 8(8):677 doi: 10.3390/horticulturae8080677 |
[27] |
Bell RL, Srinivasan C, Lomberk D. 2009. Effect of nutrient media on axillary shoot proliferation and preconditioning for adventitious shoot regeneration of pears. In Vitro Cellular & Developmental Biology - Plant 45(8):708−14 doi: 10.1007/s11627-009-9196-8 |
[28] |
Griffis JL Jr, Wedekind H, Johnson S. 1991. Effects of several commercially available solidifying agents on In Vitro growth of Alocasia bellota 'Alicia'. Proceedings of the Florida State Horticultural Society 104: 303−8. https://journals.flvc.org/fshs/article/view/104826/100718 |
[29] |
Businge E, Trifonova A, Schneider C, Rödel P, Egertsdotter U. 2017. Evaluation of a new temporary immersion bioreactor system for micropropagation of cultivars of eucalyptus, birch and fir. Forests 8(6):196 doi: 10.3390/f8060196 |
[30] |
Fogaça LA, Pedrotti EL, Alves AC. 2016. Micropropagation of Agapanthus umbellatus var minor by using two systems of multiplication. Semina: Ciências Agrárias 37(5):2923−31 doi: 10.5433/1679-0359.2016v37n5p2923 |
[31] |
Georgieva L, Tsvetkov I, Georgieva M, Kondakova V. 2016. New protocol for in vitro propagation of berry plants by TIS bioreactor. Bulgarian Journal of Agricultural Science 22(5):745−51 |
[32] |
Camargo SS, Rufato L, Magro M, de Souza ALK. 2019. Temporary immersion bioreactors: an efficient technique for the propagation of the 'Pircinque' strawberry. Revista Brasileira De Fruticultura 41 doi: 10.1590/0100-29452019102 |
[33] |
Scheidt GN, Arakaki AH, Chimilovski JS, Portella ACF, Spier MR, et al. 2009. Utilization of the bioreactor of immersion by bubbles at the micropropagation of Ananas comosus L. Merril. Brazilian Archives of Biology and Technology 52(SPE):37−43 doi: 10.1590/S1516-89132009000700005 |
[34] |
Reis CO, Silva AB, Landgraf PR, Batista JA, Jacome GA. 2018. Bioreactor in the micropropagation of ornamental pineapple. Ornamental Horticulture 24(2):182−87 doi: 10.14295/oh.v24i2.1181 |
[35] |
Farahani F, Majd A. 2012. Comparison of liquid culture methods and effect of temporary immersion bioreactor on growth and multiplication of banana (Musa, cv Dwarf Cavendish). African Journal of Biotechnology 11(33):8302−8 doi: 10.5897/ajb11.2020 |
[36] |
Alister BM, Finnie J, Watt MP, Blakeway F. 2005. Use of the temporary immersion bioreactor system (RITA®) for production of commercial Eucalyptus clones in Mondi Forests (SA). In Liquid Culture Systems for in Vitro Plant Propagation, eds. Hvolslef-Eide AK, Preil W. Dordrecht, Netherlands: Springer. pp. 425−42. https://doi.org/10.1007/1-4020-3200-5_33 |
[37] |
Dewir YH, El-Mahrouk ME, El-Banna AN. 2015. In vitro propagation and preliminary results of Agrobacterium-mediated genetic transformation of Cordyline fruticosa. South African Journal of Botany, 98:45−51 doi: 10.1016/j.sajb.2015.01.017 |
[38] |
Litwińczuk W. 2002. Propagation of black chokeberry (Aronia melanocarpa Elliot) through in vitro culture. Electronic Journal of Polish Agricultural Universities 5(2):1−7. http://www.ejpau.media.pl/volume5/issue2/horticulture/art-06.html |
[39] |
Paek KY, Chakrabarty D, Hahn EJ. 2005. Application of bioreactor systems for large scale production of horticultural and medicinal plants. In Liquid Culture Systems. In Liquid Culture Systems for in Vitro Plant Propagation, eds. Hvolslef-Eide AK, Preil W. Dordrecht, Netherlands: Springer. pp. 95−116. https://doi.org/10.1007/1-4020-3200-5_6 |
[40] |
Cengiz M, Kaçar YA. 2019. Micropropagation of some citrus rootstocks with classical and new generation tissue culture techniques. Turkish Journal of Agriculture - Food Science and Technology 7(9):1469−78 doi: 10.24925/turjaf.v7i9.1469-1478.2846 |
[41] |
Etienne H, Berthouly M. 2002. Temporary immersion systems in plant micropropagation. Plant Cell, Tissue and Organ Culture 69(3):215−31 doi: 10.1023/A:1015668610465 |
[42] |
Carvalho LSO, Ozudogru, EA, Lambardi, M, PaIva, LV. 2019. Temporary immersion system for micropropagation of tree species: a bibliographic and systematic review. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 47(2):269−77 doi: 10.15835/nbha47111305 |
[43] |
Vidal N, Sánchez C. 2019. Use of bioreactor systems in the propagation of forest trees. Engineering Life Sciences 19:896−915 doi: 10.1002/elsc.201900041 |