[1]

Zhao D, Dai Y, Zhang Z. 2011. Computational intelligence in urban traffic signal control: A survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 42:485−94

doi: 10.1109/TSMCC.2011.2161577
[2]

Ng V, Kim HM. 2021. Autonomous vehicles and smart cities: A case study of Singapore. In Smart cities for technological and social innovation, eds. Kim HM, Sabri S, Kent A. USA: Academic Press, Elsevier. pp. 265–287. https://doi.org/10.1016/B978-0-12-818886-6.00014-9

[3]

Sheng MS, Sreenivasan AV, Sharp B, Du B. 2021. Well-to-wheel analysis of greenhouse gas emissions and energy consumption for electric vehicles: A comparative study in Oceania. Energy Policy 158:112552

doi: 10.1016/j.enpol.2021.112552
[4]

Harris N, Shealy T, Klotz L. 2016. Choice architecture as a way to encourage a whole systems design perspective for more sustainable infrastructure. Sustainability 9(1):54

doi: 10.3390/su9010054
[5]

Afrin T, Yodo N. 2020. A survey of road traffic congestion measures towards a sustainable and resilient transportation system. Sustainability 12(11):4660

doi: 10.3390/su12114660
[6]

Lee WH, Chiu CY. 2020. Design and implementation of a smart traffic signal control system for smart city applications. Sensors 20(2):508

doi: 10.3390/s20020508
[7]

Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, et al. 2013. Playing atari with deep reinforcement learning. arXiv Preprint

doi: 10.48550/arXiv.1312.5602
[8]

Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, et al. 2017. Mastering the game of go without human knowledge. Nature 550:354−59

doi: 10.1038/nature24270
[9]

Berner C, Brockman G, Chan B, Cheung V, Dębiak P, et al. 2019. Dota 2 with large scale deep reinforcement learning. arXiv Preprint

doi: 10.48550/arXiv.1912.06680
[10]

Telikani A, Tahmassebi A, Banzhaf W, Gandomi AH. 2022. Evolutionary machine learning: A survey. ACM Computing Surveys (CSUR) 54(8):1−35

doi: 10.1145/3467477
[11]

Abdulhai B, Pringle R, Karakoulas GJ. 2003. Reinforcement learning for true adaptive traffic signal control. Journal of Transportation Engineering 129(3):278−85

doi: 10.1061/(ASCE)0733-947X(2003)129:3(278)
[12]

Wang X, Ke L, Qiao Z, Chai X. 2020. Large-scale traffic signal control using a novel multiagent reinforcement learning. IEEE Transactions on Cybernetics 51(1):174−87

doi: 10.1109/TCYB.2020.3015811
[13]

Wang T, Liang T, Li J, Zhang W, Zhang Y, et al. 2020. Adaptive traffic signal control using distributed MARL and federated learning. 2020 IEEE 20th International Conference on Communication Technology (ICCT), Nanning, China, 28-31 October 2020. USA: IEEE. pp. 1242−48. https://doi.org/10.1109/ICCT50939.2020.9295660

[14]

Wu Q, Wu J, Shen J, Yong B, Zhou Q. 2020. An edge based multi-agent auto communication method for traffic light control. Sensors 20(15):4291

doi: 10.3390/s20154291
[15]

Ben-Akiva M, Koutsopoulos HN, Toledo T, Yang Q, Choudhury CF, et al. 2010. Traffic simulation with MITSIMLab. In Fundamentals of traffic simulation, ed. Barceló J. New York: Springer. pp. 233−68. https://doi.org/10.1007/978-1-4419-6142-6_6

[16]

Krajzewicz D. 2010. Traffic simulation with SUMO – simulation of urban mobility. In Fundamentals of traffic simulation, ed. Barceló J. New York: Springer. pp. 269−93. https://doi.org/10.1007/978-1-4419-6142-6_7

[17]

Zhang H, Feng S, Liu C, Ding Y, Zhu Y, et al. 2019. Cityflow: A multi-agent reinforcement learning environment for large scale city traffic scenario. WWW '19: The world wide web conference, San Francisco, CA, USA, 2019. New York, NY, USA: Association for Computing Machinery. pp. 3620−24. https://doi.org/10.1145/3308558.3314139

[18]

Jang K, Vinitsky E, Chalaki B, Remer B, Beaver L, et al. 2019. Simulation to scaled city: zero-shot policy transfer for traffic control via autonomous vehicles. ICCPS '19: Proceedings of the 10th ACM/IEEE International Conference on Cyber-Physical Systems, Montreal Quebec Canada, April 16−18, 2019. pp. 291−300. c>. pp. 291−300. https://doi.org/10.1145/3302509.3313784

[19]

Wei H, Zheng G, Yao H, Li Z. 2018. Intellilight: A reinforcement learning approach for intelligent traffic light control. IKDD '18: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London United Kingdom, August 1923, 2018. New York, United States: Association for Computing Machinery. pp. 2496−505.ry. pp. 2496−505. https://doi.org/10.1145/3219819.3220096

[20]

Liang X, Du X, Wang G, Han Z. 2019. A deep reinforcement learning network for traffic light cycle control. IEEE Transactions on Vehicular Technology 68(2):1243−53

doi: 10.1109/TVT.2018.2890726
[21]

Wu Q, Shen J, Yong B, Wu J, Li F, et al. 2019. Smart fog based workflow for traffic control networks. Future Generation Computer Systems 97:825−35

doi: 10.1016/j.future.2019.02.058
[22]

Huo Y, Tao Q, Hu J. 2020. Cooperative control for multi-intersection traffic signal based on deep reinforcement learning and imitation learning. IEEE Access 8:199573−85

doi: 10.1109/ACCESS.2020.3034419
[23]

Yang S, Yang B. 2021. A semi-decentralized feudal multi-agent learned-goal algorithm for multi-intersection traffic signal control. Knowledge-Based Systems 213:106708

doi: 10.1016/j.knosys.2020.106708
[24]

Yang S, Yang B, Kang Z, Deng L. 2021. IHG-MA: Inductive heterogeneous graph multi-agent reinforcement learning for multi-intersection traffic signal control. Neural networks 139:265−77

doi: 10.1016/j.neunet.2021.03.015
[25]

Webster FV. 1958. Traffic signal settings. Technical report. Road Research Technique Paper No. 39. Road Research Laboratory, London.

[26]

Cools, S. B. ; Gershenson, C. and D’Hooghe, B. 2013. Self-organizing traffic lights: A realistic simulation. In Advances in applied self-organizing systems, ed. Prokopenko M. London: Springer. pp. 45−55. https://doi.org/10.1007/978-1-4471-5113-5_3

[27]

Hunt PB, Robertson DI, Bretherton RD, Royle MC. 1982. The SCOOT on-line traffic signal optimisation technique. Traffic Engineering & Control 23(4):190−92

[28]

Sun X, Yin Y. 2018. A simulation study on max pressure control of signalized intersections. Transportation research record 2672(18):117−27

doi: 10.1177/0361198118786840
[29]

Li L, Lv Y, Wang F. 2016. Traffic signal timing via deep reinforcement learning. IEEE/CAA Journal of Automatica Sinica 3(3):247−54

doi: 10.1109/JAS.2016.7508798
[30]

El-Tantawy S, Abdulhai B, Abdelgawad H. 2014. Design of reinforcement learning parameters for seamless application of adaptive traffic signal control. Journal of Intelligent Transportation Systems 18(3):227−45

doi: 10.1080/15472450.2013.810991
[31]

Rasheed F, Yau KLA, Low YC. 2020. Deep reinforcement learning for traffic signal control under disturbances: A case study on Sunway city, Malaysia. Future Generation Computer Systems 109:431−45

doi: 10.1016/j.future.2020.03.065
[32]

Park S, Han E, Park S, Jeong H, Yun I. 2021. Deep Q-network-based traffic signal control models. Plos One 16(9):e0256405

doi: 10.1371/journal.pone.0256405
[33]

Lownes NE, Machemehl RB. 2006. VISSIM: a multi-parameter sensitivity analysis. Proceedings of the 2006 Winter Simulation Conference, Monterey, CA, USA, December 3-6, 2006. pp. 1406-13. IEEE. https://doi.org/10.1109/WSC.2006.323241

[34]

Cameron GDB, Duncan GID. 1996. PARAMICS—Parallel microscopic simulation of road traffic. The Journal of Supercomputing 10:25−53

doi: 10.1007/BF00128098
[35]

Fox A, Griffith R, Joseph A, Katz R, Konwinski A, et al. 2009. Above the clouds: A berkeley view of cloud computing. Technical Report No. UCB/EECS-2009-28. University of California at Berkeley, USA. www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html

[36]

Bagchi S, Siddiqui MB, Wood P, Zhang H. 2019. Dependability in edge computing. Communications of the ACM 63(1):58−66

doi: 10.1145/3362068
[37]

Sutton RS, Barto AG. 2018. Reinforcement learning: An introduction. Cambridge, MA: MIT press.

[38]

Bochkovskiy A, Wang CY, Liao HYM. 2020. Yolov4: Optimal speed and accuracy of object detection. arXiv Preprint

doi: 10.48550/arXiv.2004.10934
[39]

Telikani A, Shen J, Yang J, Wang P. 2022. Industrial IoT intrusion detection via evolutionary cost-sensitive learning and fog computing. IEEE Internet of Things Journal 9(22):23260−71

doi: 10.1109/JIOT.2022.3188224
[40]

Zhang L, Wu J, Shen J, Chen M, Wang R, et al. 2021. SATP-GAN: Self-attention based generative adversarial network for traffic flow prediction. Transportmetrica B: Transport Dynamics 9(1):552−68

doi: 10.1080/21680566.2021.1916646
[41]

Goodfellow I, Bengio Y, Courville A. 2016. Deep learning. Cambridge, Massachusetts (MA): MIT press.

[42]

Dong Z, Wu Y, Pei M, Jia Y. 2015. Vehicle type classification using a semisupervised convolutional neural network. IEEE transactions on intelligent transportation systems 16(4):2247−56

doi: 10.1109/TITS.2015.2402438
[43]

Wu Q, Wu J, Shen J, Du B, Telikani A, et al. 2022. Distributed agent-based deep reinforcement learning for large scale traffic signal control. Knowledge-Based Systems 241:108304

doi: 10.1016/j.knosys.2022.108304
[44]

Mnih V, Badia AP, Mirza M, Graves A, Lillicrap T, et al. 2016. Asynchronous methods for deep reinforcement learning. Proceedings of The 33rd International Conference on Machine Learning (ICML), New York, USA, 2016. New York, USA: PMLR. pp. 1928−37.

[45]

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, et al. 2017. Attention is all you need. Advances in neural information processing systems. Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS). pp.6000–10

[46]

Merkel D. 2014. Docker: lightweight linux containers for consistent development and deployment. Linux Journal 239(2):2

[47]

Agarap AF. 2018. Deep learning using rectified linear units (relu). arXiv Preprint

doi: 10.48550/arXiv.1803.08375
[48]

Watkins CJCH. 1989. Learning from delayed rewards. PhD Thesis. University of Cambridge, England

[49]

Hu J, Wellman MP. 2003. Nash Q-learning for general-sum stochastic games. Journal of Machine Learning Research 4(Nov):1039−69

[50]

Nash JF Jr. 1950. Equilibrium points in n-person games. PNAS 36(1):48−49

doi: 10.1073/pnas.36.1.48
[51]

Casgrain, P.; Ning, B. and Jaimungal, S. 2022. Deep Q-learning for Nash equilibria: Nash-DQN. Applied Mathematical Finance 29(1):62−78

doi: 10.1080/1350486X.2022.2136727
[52]

Du B, Zhang C, Shen J, Zheng Z. 2021. A dynamic sensitivity model for unidirectional pedestrian flow with overtaking behaviour and its application on social distancing's impact during COVID-19. IEEE Transactions on Intelligent Transportation Systems 23(8):10404−17

doi: 10.1109/TITS.2021.3093714