[1]

Xia Z, Huang D, Zhang S, Wang W, Ma F, et al. 2021. Chromosome-scale genome assembly provides insights into the evolution and flavor synthesis of passion fruit (Passiflora edulis Sims). Horticulture Research 8:14

doi: 10.1038/s41438-020-00455-1
[2]

Fu Y, Jiang S, Zou M, Xiao J, Yang L, et al. 2022. High-quality reference genome sequences of two Cannaceae species provide insights into the evolution of Cannaceae. Frontiers in Plant Science 13:955904

doi: 10.3389/fpls.2022.955904
[3]

Hu G, Feng J, Xiang X, Wang J, Salojärvi J, et al. 2022. Two divergent haplotypes from a highly heterozygous lychee genome suggest independent domestication events for early and late-maturing cultivars. Nature genetics 54:73−83

doi: 10.1038/s41588-021-00971-3
[4]

Wang S, Xiao Y, Zhou Z, Yuan J, Guo H, et al. 2021. High-quality reference genome sequences of two coconut cultivars provide insights into evolution of monocot chromosomes and differentiation of fiber content and plant height. Genome Biology 22:304

doi: 10.1186/s13059-021-02522-9
[5]

Li J, Chen C, Zeng Z, Wu F, Feng J, et al. 2022. SapBase (Sapinaceae Genomic DataBase): a central portal for functional and comparative genomics of Sapindaceae species. bioRxiv Preprint

doi: 10.1101/2022.11.25.517904
[6]

Yang Z, Liu Z, Xu H, Li Y, Huang S, et al. 2023. A comprehensive multi-omics database for Arecaceae breeding and functional genomics studies. Plant Biotechnology Journal 21:11−13

doi: 10.1111/pbi.13945
[7]

Hamelin C, Sempere G, Jouffe V, Ruiz M. 2013. TropGeneDB, the multi-tropical crop information system updated and extended. Nucleic Acids Research 41:D1172−D1175

doi: 10.1093/nar/gks1105
[8]

Zou M, Lu C, Zhang S, Chen Q, Sun X, et al. 2017. Epigenetic map and genetic map basis of complex traits in cassava population. Scientific Reports 7:41232

doi: 10.1038/srep41232
[9]

Xia Z, Liu K, Zhang S, Yu W, Zou M, et al. 2018. An ultra-high density map allowed for mapping QTL and candidate genes controlling dry latex yield in rubber tree. Industrial Crops & Products 120:351−56

doi: 10.1016/j.indcrop.2018.04.057
[10]

de Sousa N, Carlier J, Santo T, Leitão J. 2013. An integrated genetic map of pineapple (Ananas comosus (L.) Merr.). Scientia Horticulturae 157:113−18

doi: 10.1016/j.scienta.2013.04.018
[11]

Kuhn DN, Bally ISE, Dillon NL, Innes D, Groh AM, et al. 2017. Genetic map of mango: A tool for mango breeding. Frontiers in Plant Science 8:577

doi: 10.3389/fpls.2017.00577
[12]

Lespinasse D, Rodier-Goud M, Grivet L, Leconte A, Legnate H, et al. 2000. A saturated genetic linkage map of rubber tree (Hevea spp.) based on RFLP, AFLP, microsatellite, and isozyme markers. TAG Theoretical and Applied Genetics 100:127−38

doi: 10.1007/s001220050018
[13]

Tran DM, Clément-Demange A, Déon M, Garcia D, le Guen V, et al. 2016. Genetic determinism of sensitivity to Corynespora cassiicola exudates in rubber tree (Hevea brasiliensis). PLoS One 11:e0162807

doi: 10.1371/journal.pone.0162807
[14]

Rabbi IY, Kulembeka HP, Masumba E, Marri PR, Ferguson M, et al. 2012. An EST-derived SNP and SSR genetic linkage map of cassava (Manihot esculenta Crantz). Theoretical and Applied Genetics 125:329−42

doi: 10.1007/s00122-012-1836-4
[15]

International Cassava Genetic Map Consortium (ICGMC), et al. 2015. High-resolution linkage map and chromosome-scale genome assembly for cassava (Manihot esculenta Crantz) from 10 populations. G3 Genes|Genomes|Genetics 5:133−44

doi: 10.1534/g3.114.015008
[16]

Garcia-Oliveira AL, Kimata B, Kasele S, Kapinga F, Masumba E, et al. 2020. Genetic analysis and QTL mapping for multiple biotic stress resistance in cassava. PloS One 15:e0236674

doi: 10.1371/journal.pone.0236674
[17]

Ewa F, Asiwe JNA, Okogbenin E, Ogbonna AC, Egesi C. 2021. KASPar SNP genetic map of cassava for QTL discovery of productivity traits in moderate drought stress environment in Africa. Scientific Reports 11:11268

doi: 10.1038/s41598-021-90131-8
[18]

Hussain, W, Campbell, M, Walia, H, Morota, G, et al. 2018. ShinyAIM: Shiny-based application of interactive Manhattan plots for longitudinal genome-wide association studies. Plant Direct 2:e00091

doi: 10.1002/pld3.91
[19]

Yang Z, Liang C, Wei L, Wang S, Yin F, et al. 2022. BnVIR: bridging the genotype-phenotype gap to accelerate mining of candidate variations underlying agronomic traits in Brassica napus. Molecular Plant 15:779−82

doi: 10.1016/j.molp.2022.02.002