[1]

Thomashow MF. 1999. PLANT COLD ACCLIMATION: freezing tolerance genes and regulatory mechanisms. Annual Review of Plant Physiology and Plant Molecular Biology 50:571−99

doi: 10.1146/annurev.arplant.50.1.571
[2]

Uemura M, Joseph RA, Steponkus PL. 1995. Cold acclimation of Arabidopsis thaliana (effect on plasma membrane lipid composition and freeze-induced lesions). Plant Physiology 109:15−30

doi: 10.1104/pp.109.1.15
[3]

Shi Y, Ding Y, Yang S. 2014. Cold signal transduction and its interplay with phytohormones during cold acclimation. Plant and Cell Physiology 56:7−15

doi: 10.1093/pcp/pcu115
[4]

Wang X, Zhao Q, Ma C, Zhang Z, Cao H, et al. 2013. Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genomics 14:415

doi: 10.1186/1471-2164-14-415
[5]

Wu Y, Huang W, Tian Q, Liu J, Xia X, et al. 2021. Comparative transcriptomic analysis reveals the cold acclimation during chilling stress in sensitive and resistant passion fruit (Passiflora edulis) cultivars. PeerJ 9:e10977

doi: 10.7717/peerj.10977
[6]

Renaut J, Hausman JF, Wisniewski ME. 2006. Proteomics and low-temperature studies: bridging the gap between gene expression and metabolism. Physiologia Plantarum 126:97−109

doi: 10.1111/j.1399-3054.2006.00617.x
[7]

Short S, Díaz R, Quiñones J, Beltrán J, Farías JG, et al. 2020. Effect of in vitro cold acclimation of Deschampsia antarctica on the accumulation of proteins with antifreeze activity. Journal of Experimental Botany 71:2933−42

doi: 10.1093/jxb/eraa071
[8]

Kawamura Y, Uemura M. 2003. Mass spectrometric approach for identifying putative plasma membrane proteins of Arabidopsis leaves associated with cold acclimation. The Plant Journal 36:141−54

doi: 10.1046/j.1365-313X.2003.01864.x
[9]

Huo C, Zhang B, Wang H, Wang F, Liu M, et al. 2016. Comparative study of early cold-regulated proteins by two-dimensional difference gel electrophoresis reveals a key role for phospholipase Dα1 in mediating cold acclimation signaling pathway in rice. Molecular & Cellular Proteomics 15:1397−411

doi: 10.1074/mcp.M115.049759
[10]

Balbuena TS, Salas JJ, Martínez-Force E, Garcés R, Thelen JJ. 2011. Proteome analysis of cold acclimation in sunflower. Journal of Proteome Research 10:2330−46

doi: 10.1021/pr101137q
[11]

Takahashi D, Li B, Nakayama T, Kawamura Y, Uemura M. 2013. Plant plasma membrane proteomics for improving cold tolerance. Frontiers in Plant Science 4:90

doi: 10.3389/fpls.2013.00090
[12]

Chen L, Zhou Z, Yang Y. 2007. Genetic improvement and breeding of tea plant (Camellia sinensis) in China: from individual selection to hybridization and molecular breeding. Euphytica 154:239−48

doi: 10.1007/s10681-006-9292-3
[13]

Yang Y, Zhen L, Wang X. 2004. Effect of cold acclimation and ABA on cold hardiness, contents of proline in tea plants. Journal of Tea Science 24:177−82

[14]

Yue C, Cao H, Wang L, Zhou Y, Huang Y, et al. 2015. Effects of cold acclimation on sugar metabolism and sugar-related gene expression in tea plant during the winter season. Plant Molecular Biology 88:591−608

doi: 10.1007/s11103-015-0345-7
[15]

Yang Y, Zheng L, Wang X. 2005. Changes of membrane fatty acid composition and protein in tea leaves at low temperature. Subtropical Plant Science 34(1):5−9

[16]

Paul A, Lal L, Ahuja PS, Kumar S. 2012. Alpha-tubulin (CsTUA) up-regulated during winter dormancy is a low temperature inducible gene in tea [Camellia sinensis (L.) O. Kuntze. Molecular Biology Reports 39:3485−90

doi: 10.1007/s11033-011-1121-7
[17]

Yin Y, Ma Q, Zhu Z, Cui Q, Chen C, et al. 2016. Functional analysis of CsCBF3 transcription factor in tea plant (Camellia sinensis) under cold stress. Plant Growth Regulation 80:335−43

doi: 10.1007/s10725-016-0172-0
[18]

Qian W, Xiao B, Wang L, Hao X, Yue C, et al. 2018. CsINV5, a tea vacuolar invertase gene enhances cold tolerance in transgenic Arabidopsis. BMC Plant Biology 18:228

doi: 10.1186/s12870-018-1456-5
[19]

Wang L, Feng X, Yao L, Ding C, Lei L, et al. 2020. Characterization of CBL-CIPK signaling complexes and their involvement in cold response in tea plant. Plant Physiology and Biochemistry 154:195−203

doi: 10.1016/j.plaphy.2020.06.005
[20]

Zhao M, Zhang N, Gao T, Jin J, Jing T, et al. 2020. Sesquiterpene glucosylation mediated by glucosyltransferase UGT91Q2 is involved in the modulation of cold stress tolerance in tea plants. New Phytologist 226:362−72

doi: 10.1111/nph.16364
[21]

Yang Q, Wu J, Li C, Wei Y, Sheng O, et al. 2012. Quantitative proteomic analysis reveals that antioxidation mechanisms contribute to cold tolerance in plantain (Musa paradisiaca L.; ABB Group) seedlings. Molecular & Cellular Proteomics 11:1853−69

doi: 10.1074/mcp.M112.022079
[22]

Wang X, Shan X, Wu Y, Su S, Li S, et al. 2016. iTRAQ-based quantitative proteomic analysis reveals new metabolic pathways responding to chilling stress in maize seedlings. Journal of Proteomics 146:14−24

doi: 10.1016/j.jprot.2016.06.007
[23]

Zheng Q, Wang X. 2008. GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis. Nucleic Acids Research 36:W358−W363

doi: 10.1093/nar/gkn276
[24]

Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, et al. 2007. KEGG for linking genomes to life and the environment. Nucleic Acids Research 36:D480−D484

doi: 10.1093/nar/gkm882
[25]

Zheng B, Fang Y, Pan Z, Sun L, Deng X, et al. 2014. iTRAQ-based quantitative proteomics analysis revealed alterations of carbohydrate metabolism pathways and mitochondrial proteins in a male sterile cybrid pummelo. Journal of Proteome Research 13:2998−3015

doi: 10.1021/pr500126g
[26]

Hao X, Horvath DP, Chao WS, Yang Y, Wang X, et al. 2014. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze). International Journal of Molecular Sciences 15:22155−72

doi: 10.3390/ijms151222155
[27]

Kanehisa M, Goto S. 2000. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research 28:27−30

doi: 10.1093/nar/28.1.27
[28]

Li X, Feng Z, Yang H, Zhu X, Liu J, et al. 2010. A novel cold-regulated gene from Camellia sinensis, CsCOR1, enhances salt- and dehydration-tolerance in tobacco. Biochemical and Biophysical Research Communications 394:354−9

doi: 10.1016/j.bbrc.2010.03.011
[29]

Wang Y, Jiang C, Li Y, Wei C, Deng W. 2012. CsICE1 and CsCBF1: two transcription factors involved in cold responses in Camellia sinensis. Plant Cell Reports 31:27−34

doi: 10.1007/s00299-011-1136-5
[30]

Wang L, Li X, Zhao Q, Jing S, Chen S, et al. 2009. Identification of genes induced in response to low-temperature treatment in tea leaves. Plant Molecular Biology Reporter 27:257−65

doi: 10.1007/s11105-008-0079-7
[31]

Byun YJ, Koo MY, Joo HJ, Ha-Lee YM, Lee DH. 2014. Comparative analysis of gene expression under cold acclimation, deacclimation and reacclimation in Arabidopsis. Physiologia Plantarum 152:256−74

doi: 10.1111/ppl.12163
[32]

Kosmala A, Bocian A, Rapacz M, Jurczyk B, Zwierzykowski Z. 2009. Identification of leaf proteins differentially accumulated during cold acclimation between Festuca pratensis plants with distinct levels of frost tolerance. Journal of Experimental Botany 60:3595−609

doi: 10.1093/jxb/erp205
[33]

Neilson KA, Mariani M, Haynes PA. 2011. Quantitative proteomic analysis of cold-responsive proteins in rice. Proteomics 11:1696−706

doi: 10.1002/pmic.201000727
[34]

Chen J, Han G, Shang C, Li J, Zhang H, et al. 2015. Proteomic analyses reveal differences in cold acclimation mechanisms in freezing-tolerant and freezing-sensitive cultivars of alfalfa. Frontiers in Plant Science 6:105

doi: 10.3389/fpls.2015.00105
[35]

Tian X, Liu Y, Huang Z, Duan H, Tong J, et al. 2015. Comparative proteomic analysis of seedling leaves of cold-tolerant and -sensitive spring soybean cultivars. Molecular Biology Reports 42:581−601

doi: 10.1007/s11033-014-3803-4
[36]

Degand H, Faber AM, Dauchot N, Mingeot D, Watillon B, et al. 2009. Proteomic analysis of chicory root identifies proteins typically involved in cold acclimation. Proteomics 9:2903−7

doi: 10.1002/pmic.200800744
[37]

Gao F, Zhou Y, Zhu W, Li X, Fan L, et al. 2009. Proteomic analysis of cold stress-responsive proteins in Thellungiella rosette leaves. Planta 230:1033−46

doi: 10.1007/s00425-009-1003-6
[38]

Sasidharan R, Voesenek LA, Pierik R. 2011. Cell wall modifying proteins mediate plant acclimatization to biotic and abiotic stresses. Critical Reviews in Plant Sciences 30:548−62

doi: 10.1080/07352689.2011.615706
[39]

Goodwin W, Pallas JA, Jenkins GI. 1996. Transcripts of a gene encoding a putative cell wall-plasma membrane linker protein are specifically cold-induced in Brassica napus. Plant Molecular Biology 31:771−81

doi: 10.1007/BF00019465
[40]

Córcoles-Sáez I, Ballester-Tomas L, de la Torre-Ruiz MA, Prieto JA, Randez-Gil F. 2012. Low temperature highlights the functional role of the cell wall integrity pathway in the regulation of growth in Saccharomyces cerevisiae. The Biochemical Journal 446:477−88

doi: 10.1042/BJ20120634
[41]

Baldwin L, Domon JM, Klimek JF, Fournet F, Sellier H, et al. 2014. Structural alteration of cell wall pectins accompanies pea development in response to cold. Phytochemistry 104:37−47

doi: 10.1016/j.phytochem.2014.04.011
[42]

Fowler S, Thomashow MF. 2002. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. The Plant Cell 14:1675−90

doi: 10.1105/tpc.003483
[43]

Allen RD. 1995. Dissection of oxidative stress tolerance using transgenic plants. Plant Physiology 107:1049−54

doi: 10.1104/pp.107.4.1049
[44]

Suzuki N, Mittler R. 2006. Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiologia Plantarum 126:45−51

doi: 10.1111/j.0031-9317.2005.00582.x
[45]

Renaut J, Lutts S, Hoffmann L, Hausman JF. 2004. Responses of poplar to chilling temperatures: proteomic and physiological aspects. Plant Biology 6:81−90

doi: 10.1055/s-2004-815733
[46]

Hashimoto M, Komatsu S. 2007. Proteomic analysis of rice seedlings during cold stress. Proteomics 7:1293−302

doi: 10.1002/pmic.200600921
[47]

Steponkus PL. 1984. Role of the plasma membrane in freezing injury and cold acclimation. Annual Review of Plant Physiology 35:543−84

doi: 10.1146/annurev.pp.35.060184.002551
[48]

Aruoma OI, Murcia A, Butler J, Halliwell B. 1993. Evaluation of the antioxidant and prooxidant actions of Gallic acid and its derivatives. Journal of Agricultural and Food Chemistry 41:1880−85

doi: 10.1021/jf00035a014
[49]

Welling A, Palva ET. 2006. Molecular control of cold acclimation in trees. Physiologia Plantarum 127:167−81

doi: 10.1111/j.1399-3054.2006.00672.x
[50]

Skriver K, Mundy J. 1990. Gene expression in response to abscisic acid and osmotic stress. The Plant Cell 2:503−12

doi: 10.1105/tpc.2.6.503
[51]

Rinne P, Tuominen H, Junttila O. 1994. Seasonal changes in bud dormancy in relation to bud morphology, water and starch content, and abscisic acid concentration in adult trees of Betula pubescens. Tree Physiology 14:549−61

doi: 10.1093/treephys/14.6.549
[52]

Guy CL. 1990. Cold acclimation and freezing stress tolerance: role of protein metabolism. Annual Review of Plant Physiology and Plant Molecular Biology 41:187−223

doi: 10.1146/annurev.pp.41.060190.001155
[53]

Takahashi D, Kawamura Y, Uemura M. 2013. Changes of detergent-resistant plasma membrane proteins in oat and rye during cold acclimation: association with differential freezing tolerance. Journal of Proteome Research 12:4998−5011

doi: 10.1021/pr400750g
[54]

Janská A, Maršík P, Zelenková S, Ovesná J. 2010. Cold stress and acclimation - what is important for metabolic adjustment? Plant Biology 12:395−405

doi: 10.1111/j.1438-8677.2009.00299.x
[55]

Uemura M, Tominaga Y, Nakagawara C, Shigematsu S, Minami A, et al. 2006. Responses of the plasma membrane to low temperatures. Physiologia Plantarum 126:81−9

doi: 10.1111/j.1399-3054.2005.00594.x
[56]

Li B, Takahashi D, Kawamura Y, Uemura M. 2012. Comparison of plasma membrane proteomic changes of Arabidopsis suspension-cultured cells (T87 line) after cold and ABA treatment in association with freezing tolerance development. Plant and Cell Physiology 53:543−54

doi: 10.1093/pcp/pcs010
[57]

Li W, Li M, Zhang W, Welti R, Wang X. 2004. The plasma membrane-bound phospholipase Dδ enhances freezing tolerance in Arabidopsis thaliana. Nature Biotechnology 22:427−33

doi: 10.1038/nbt949
[58]

Schöffl F, Prändl R, Reindl A. 1998. Regulation of the heat-shock response. Plant Physiology 117:1135−41

doi: 10.1104/pp.117.4.1135
[59]

Wang W, Vinocur B, Shoseyov O, Altman A. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science 9:244−52

doi: 10.1016/j.tplants.2004.03.006