[1]

Jiang Y, Liu M, Liu H, Liu S. 2020. A critical review: traditional uses, phytochemistry, pharmacology and toxicology of Stephania tetrandra S. Moore (Fen Fang Ji). Phytochemistry Reviews 19:449−89

doi: 10.1007/s11101-020-09673-w
[2]

Xue J, Liu S, Kang Y, Wang Y, Weng W, et al. 2023. An integrated strategy for characterization of chemical constituents in Stephania tetrandra using LC-QTOF-MS/MS and the target isolation of two new biflavonoids. Journal of Pharmaceutical and Biomedical Analysis 226:115247

doi: 10.1016/j.jpba.2023.115247
[3]

Chen Y, Tseng SH. 2010. The potential of tetrandrine against gliomas. Anti-Cancer Agents in Medicinal Chemistry 10:534−42

doi: 10.2174/187152010793498609
[4]

Reist RH, Dey RD, Durham JP, Rojanasakul Y, Castranova V. 1993. Inhibition of proliferative activity of pulmonary fibroblasts by tetrandrine. Toxicology and Applied Pharmacology 122:70−76

doi: 10.1006/taap.1993.1173
[5]

Liu BC, He YX, Miao Q, Wang HH, You BR. 1994. The effects of tetrandrine (TT) and polyvinylpyridine-N-oxide (PVNO) on gene expression of type I and type III collagens during experimental silicosis. Biomedical and Environmental Sciences 7:199−204

[6]

Li T, Xu XH, Guo X, Yuan T, Tang ZH, et al. 2020. Activation of notch 3/c-MYC/CHOP axis regulates apoptosis and promotes sensitivity of lung cancer cells to mTOR inhibitor everolimus. Biochemical Pharmacolog 175:113921

doi: 10.1016/j.bcp.2020.113921
[7]

Park SU, Yu M, Facchini PJ. 2003. Modulation of berberine bridge enzyme levels in transgenic root cultures of California poppy alters the accumulation of benzophenanthridine alkaloids. Plant Molecular Biology 51:153−64

doi: 10.1023/A:1021199311049
[8]

Sharafi A, Hashemi Sohi H, Mousavi A, Azadi P, Dehsara B, et al. 2013. Enhanced morphinan alkaloid production in hairy root cultures of Papaver bracteatum by over-expression of salutaridinol 7-o-acetyltransferase gene via Agrobacterium rhizogenes mediated transformation. World Journal of Microbiology and Biotechnology 29:2125−31

doi: 10.1007/s11274-013-1377-2
[9]

Wang J, Man S, Gao W, Zhang L, Huang L. 2013. Cluster analysis of ginseng tissue cultures, dynamic change of growth, total saponins, specific oxygen uptake rate in bioreactor and immuno-regulative effect of ginseng adventitious root. Industrial Crops and Products 41:57−63

doi: 10.1016/j.indcrop.2012.04.005
[10]

Ho TT, Lee KJ, Lee JD, Bhushan S, Paek KY, et al. 2017. Adventitious root culture of Polygonum multiflorum for phenolic compounds and its pilot-scale production in 500 L-tank. Plant Cell, Tissue and Organ Culture (PCTOC) 130:167−81

doi: 10.1007/s11240-017-1212-9
[11]

Hagel JM, Facchini PJ. 2013. Benzylisoquinoline alkaloid metabolism: a century of discovery and a brave new world. Plant and Cell Physiology 54:647−72

doi: 10.1093/pcp/pct020
[12]

Samanani N, Liscombe DK, Facchini PJ. 2004. Molecular cloning and characterization of norcoclaurine synthase, an enzyme catalyzing the first committed step in benzylisoquinoline alkaloid biosynthesis. The Plant Journal 40:302−13

doi: 10.1111/j.1365-313X.2004.02210.x
[13]

Fumihiko Sato NT, Hiroyuki Fujiwara, Yasuyuki Katagiri, Liping Huan, Yasuyuki Yamada. 1994. Characterization of Coptisjaponica cells with different alkaloid productivities. Plant Cell, Tissue and Organ Culture 38:249−56

doi: 10.1007/BF00033884
[14]

Ounaroon A, Decker G, Schmidt J, Lottspeich F, Kutchan TM. 2003. (R,S)-Reticuline 7-O-methyltransferase and (R,S)-norcoclaurine 6-O-methyltransferase of Papaver somniferum - cDNA cloning and characterization of methyl transfer enzymes of alkaloid biosynthesis in opium poppy. The Plant Journal 36:808−19

doi: 10.1046/j.1365-313x.2003.01928.x
[15]

Choi KB, Morishige T, Shitan N, Yazaki K, Sato F. 2002. Molecular cloning and characterization of coclaurine N-methyltransferase from cultured cells of Coptis japonica. The Journal of Biological Chemistry 277:830−35

doi: 10.1074/jbc.M106405200
[16]

Weber C, Opatz T. 2019. Bisbenzylisoquinoline Alkaloids. In The Alkaloids: Chemistry and Biology, ed. Knölker HJ. vol 81. US, UK: Academic Press. pp. 1−114. https://doi.org/10.1016/bs.alkal.2018.07.001

[17]

Stadler R, Zenk MH. 1993. The purification and characterization of a unique cytochrome P-450 enzyme from Berberis stolonifera plant cell cultures. Journal of Biological Chemistry 268:823−31

doi: 10.1016/S0021-9258(18)54008-4
[18]

Hickey LT, Hafeez AN, Robinson H, Jackson SA, Leal-Bertioli SCM, et al. 2019. Breeding crops to feed 10 billion. Nature Biotechnology 37:744−54

doi: 10.1038/s41587-019-0152-9
[19]

Zhu X, Liu X, Liu T, Wang Y, Ahmed N, et al. 2021. Synthetic biology of plant natural products: From pathway elucidation to engineered biosynthesis in plant cells. Plant Communications 2:100229

doi: 10.1016/j.xplc.2021.100229
[20]

Liu X, Zhang P, Zhao Q, Huang AC. 2023. Making small molecules in plants: A chassis for synthetic biology-based production of plant natural products. Journal of Integrative Plant Biology 65:417−43

doi: 10.1111/jipb.13330
[21]

Shen Q, Zhang L, Liao Z, Wang S, Yan T, et al. 2018. The genome of Artemisia annua provides insight into the evolution of asteraceae family and artemisinin biosynthesis. Molecular Plant 11:776−88

doi: 10.1016/j.molp.2018.03.015
[22]

Zhang Q, Liang M, Liu Y, Yang C, Zeng J, et al. 2021. Development of homozygous transgenic Atropa belladonna plants with glyphosate resistance and high-yield scopolamine using metabolic engineering. Industrial Crops and Products 171:113953

doi: 10.1016/j.indcrop.2021.113953
[23]

Shi M, Liao P, Nile SH, Georgiev MI, Kai G. 2021. Biotechnological Exploration of Transformed Root Culture for Value-Added Products. Trends in Biotechnology 39:137−49

doi: 10.1016/j.tibtech.2020.06.012
[24]

Bu J, Zhang X, Li Q, Ma Y, Hu Z, et al. 2022. Catalytic promiscuity of O-methyltransferases from Corydalis yanhusuo leading to the structural diversity of benzylisoquinoline alkaloids. Horticulture Research 9:uhac152

doi: 10.1093/hr/uhac152
[25]

Chen W, Ye Z, Xu F, Wu Y, Liu B, et al. 2021. Simultaneous determination of tetrandrine and fangchindine in Stephania tetrandra from different habitats by HPLC. Traditional Chinese Drug Research & Clinical Pharmacology 32:1716−19

[26]

Sato F, Tsujita T, Katagiri Y, Yoshida S, Yamada Y. 1994. Purification and characterization of S-adenosyl-L-methionine: norcoclaurine 6-O-methyltransferase from cultured Coptis japonica cells. European Journal of Biochemistry 225:125−31

doi: 10.1111/j.1432-1033.1994.00125.x
[27]

Frick S, Kutchan TM. 1999. Molecular cloning and functional expression of O-methyltransferases common to isoquinoline alkaloid and phenylpropanoid biosynthesis. The Plant Journal 17:329−39

doi: 10.1046/j.1365-313X.1999.00379.x
[28]

Inui T, Tamura K, Fujii N, Morishige T, Sato F. 2007. Overexpression of Coptis japonica norcoclaurine 6-O-methyltransferase overcomes the rate-limiting step in Benzylisoquinoline alkaloid biosynthesis in cultured Eschscholzia californica. Plant & Cell Physiology 48:252−62

doi: 10.1093/pcp/pcl062
[29]

Li Q, Bu J, Ma Y, Yang J, Hu Z, et al. 2020. Characterization of O-methyltransferases involved in the biosynthesis of tetrandrine in Stephania tetrandra. Journal of Plant Physiology 250:153181

doi: 10.1016/j.jplph.2020.153181
[30]

Wang JW, Wu JY. 2013. Effective elicitors and process strategies for enhancement of secondary metabolite production in hairy root cultures. In Biotechnology of Hairy Root Systems. Advances in Biochemical Engineering/Biotechnology, ed. Doran P. vol 134. Heidelberg: Springer, Berlin. pp. 55-89. https://doi.org/10.1007/10_2013_183

[31]

Cho HY, Son SY, Rhee HS, Yoon SYH, Lee-Parsons CWT, et al. 2008. Synergistic effects of sequential treatment with methyl jasmonate, salicylic acid and yeast extract on benzophenanthridine alkaloid accumulation and protein expression in Eschscholtzia californica suspension cultures. Journal of Biotechnology 135:117−22

doi: 10.1016/j.jbiotec.2008.02.020
[32]

Dastmalchi T, Omidi M, Azizinezhad R, Rezazadeh S, Etminan A. 2019. Effects of methyl jasmonate and phloroglucinol on thebaine and sanguinarine production in cell suspension culture of Persian poppy (Papaver bracteatum Lindl. ). Cellular and Molecular Biology 65:11−17

[33]

Shi M, Luo X, Ju G, Yu X, Hao X, et al. 2015. Increased accumulation of the cardio-cerebrovascular disease treatment drug tanshinone in Salvia miltiorrhiza hairy roots by the enzymes 3-hydroxy-3-methylglutaryl CoA reductase and 1-deoxy-D-xylulose 5-phosphate reductoisomerase. Functional & Integrative Genomics 14:603−15

doi: 10.1007/s10142-014-0385-0
[34]

Hao X, Shi M, Cui L, Xu C, Zhang Y, et al. 2015. Effects of methyl jasmonate and salicylic acid on tanshinone production and biosynthetic gene expression in transgenic Salvia miltiorrhiza hairy roots. International Union of Biochemistry and Molecular Biology 62:24−31

doi: 10.1002/bab.1236
[35]

el Jaber-Vazdekis Ne, Barres ML, Ravelo AnG, Zárate R. 2008. Effects of elicitors on tropane alkaloids and gene expression in Atropa baetica transgenic hairy roots. Journal of Natural Products 71:2026−31

doi: 10.1021/np800573j
[36]

Butler NM, Jansky SH, Jiang J. 2020. First-generation genome editing in potato using hairy root transformation. Plant Biotechnology Journal 18:2201−09

doi: 10.1111/pbi.13376
[37]

Irigoyen S, Ramasamy M, Pant S, Niraula P, Bedre R, et al. 2020. Plant hairy roots enable high throughput identification of antimicrobials against Candidatus Liberibacter spp. Nature Communications 11:5802

doi: 10.1038/s41467-020-19631-x