[1] |
Huang C, Wang Y, Li X, Ren L, Zhao J, et al. 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395:497−506 doi: 10.1016/S0140-6736(20)30183-5 |
[2] |
Wang M, Cao R, Zhang L, Yang X, Liu J, et al. 2020. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research 30:269−71 doi: 10.1038/s41422-020-0282-0 |
[3] |
Wan Y, Shang J, Graham R, Baric RS, Li F. 2020. Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS. Journal of Virology 94:e00127−20 doi: 10.1128/JVI.00127-20 |
[4] |
Du L, He Y, Zhou Y, Liu S, Zheng B, et al. 2009. The spike protein of SARS-CoV-a target for vaccine and therapeutic development. Nature Reviews Microbiology 7:226−236 doi: 10.1038/nrmicro2090 |
[5] |
Towler P, Staker B, Prasad SG, Menon S, Tang J, et al. 2004. ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. The Journal of Biological Chemistry 279:17996−8007 doi: 10.1074/jbc.M311191200 |
[6] |
de Clercq E. 2002. Strategies in the design of antiviral drugs. Nature Reviews Drug discovery 1:13−25 doi: 10.1038/nrd703 |
[7] |
Agost-Beltrán L, de la Hoz-Rodríguez S, Bou-Iserte L, Rodríguez S, Fernández-de-la-Pradilla A, et al. 2022. Advances in the development of SARS-CoV-2 Mpro inhibitors. Molecules 27(8):2523 doi: 10.3390/molecules27082523 |
[8] |
Chen R, Gao Y, Liu H, Li H, Chen W, et al. 2022. Advances in research on 3C-like protease (3CLpro) inhibitors against SARS-CoV-2 since 2020. RSC Medicinal Chemistry 14(1):9−21 doi: 10.1039/d2md00344a |
[9] |
Huff S, Kummetha IR, Tiwari SK, Huante MB, Clark AE, et al. 2022. Discovery and mechanism of SARS-CoV-2 main protease inhibitors. Journal of Medicinal Chemistry 65(4):2866−79 doi: 10.1021/acs.jmedchem.1c00566 |
[10] |
Amporndanai K, Meng X, Shang W, Jin Z, Rogers M, et al. 2021. Inhibition mechanism of SARS-CoV-2 main protease by ebselen and its derivatives. Nature Communications 12(1):3061 doi: 10.1038/s41467-021-23313-7 |
[11] |
Sabbah DA, Hajjo R, Bardaweel SK, Zhong HA. 2021. An updated review on SARS-CoV-2 main proteinase (MPro): Protein structure and small-molecule inhibitors. Current Topics in Medicinal Chemistry 21(6):442−60 doi: 10.2174/1568026620666201207095117 |
[12] |
Narayanan A, Narwal M, Majowicz SA, Varricchio C, Toner SA, et al. 2022. Identification of SARS-CoV-2 inhibitors targeting Mpro and PLpro using in-cell-protease assay. Communications Biology 5:169 doi: 10.1038/s42003-022-03090-9 |
[13] |
Zhang L, Zhao H, Liu J, He L, Yu R, et al. 2022. Design of SARS-CoV-2 Mpro, PLpro dual-target inhibitors based on deep reinforcement learning and virtual screening. Future Medicinal Chemistry 14(6):393−405 doi: 10.4155/fmc-2021-0269 |
[14] |
Silva RC, Freitas HF, Campos JM, Kimani NM, Silva CHTP, et al. 2021. Natural products-based drug design against SARS-CoV-2 Mpro 3CLpro. International Journal of Molecular Sciences 22(21):11739 doi: 10.3390/ijms222111739 |
[15] |
Dou X, Sun Q, Xu G, Liu Y, Zhang C, et al. 2022. Discovery of 2-(furan-2-ylmethylene)hydrazine-1-carbothioamide derivatives as novel inhibitors of SARS-CoV-2 main protease. European Journal of Medicinal Chemistry 238:114508 doi: 10.1016/j.ejmech.2022.114508 |
[16] |
Wit ED, van Doremalen NV, Falzarano D, Munster VJ. 2016. SARS and MERS: recent insights into emerging coronaviruses. Nature Reviews Microbiology 14:523−34 doi: 10.1038/nrmicro.2016.81 |
[17] |
Jin Z, Du X, Xu Y, Deng Y, Liu M, et al. 2020. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 582:289−93 doi: 10.1038/s41586-020-2223-y |
[18] |
Hu Q, Xiong Y, Zhu G, Zhang Y, Zhang YW, et al. 2022. The SARS-CoV-2 main protease (Mpro): Structure, function, and emerging therapies for COVID-19. MedComm 3:e151 doi: 10.1002/mco2.151 |
[19] |
Yan Y, Shen X, Cao Y, Zhang J, Wang Y, et al. 2020. Discovery of anti-2019-nCoV agents from 38 Chinese patent drugs toward respiratory diseases via docking screening. Preprints 0:2020020254 doi: 10.20944/preprints202002.0254.v2 |
[20] |
Xiong Y, Zhu G, Zhang Y, Hu Q, Wang H, et al. 2021. Flavonoids in Ampelopsis grossedentata as covalent inhibitors of SARS-CoV-2 3CLpro: Inhibition potentials, covalent binding sites and inhibitory mechanisms. International Journal of Biological Macromolecules 187:976−87 doi: 10.1016/j.ijbiomac.2021.07.167 |