[1]

Huang C, Wang Y, Li X, Ren L, Zhao J, et al. 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395:497−506

doi: 10.1016/S0140-6736(20)30183-5
[2]

Wang M, Cao R, Zhang L, Yang X, Liu J, et al. 2020. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research 30:269−71

doi: 10.1038/s41422-020-0282-0
[3]

Wan Y, Shang J, Graham R, Baric RS, Li F. 2020. Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus. Journal of Virology 94:e00127−20

doi: 10.1128/JVI.00127-20
[4]

Du L, He Y, Zhou Y, Liu S, Zheng B, et al. 2009. The spike protein of SARS-CoV-a target for vaccine and therapeutic development. Nature Reviews Microbiology 7:226−36

doi: 10.1038/nrmicro2090
[5]

Towler P, Staker B, Prasad SG, Menon S, Tang J, et al. 2004. ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. The Journal of Biological Chemistry 279:17996−8007

doi: 10.1074/jbc.M311191200
[6]

de Clercq E. 2002. Strategies in the design of antiviral drugs. Nature Reviews Drug Discovery 1:13−25

doi: 10.1038/nrd703
[7]

de Wit E, van Doremalen NV, Falzarano D, Munster VJ. 2016. SARS and MERS: recent insights into emerging coronaviruses. Nature Reviews Microbiology 14:523−34

doi: 10.1038/nrmicro.2016.81
[8]

Jin Z, Du X, Xu Y, Deng Y, Liu M, et al. 2020. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 582:289−93

doi: 10.1038/s41586-020-2223-y
[9]

Hu Q, Xiong Y, Zhu GH, Zhang YN, Zhang YW, et al. 2022. The SARS-CoV-2 main protease (Mpro): Structure, function, and emerging therapies for COVID-19. MedComm 3:e151

doi: 10.1002/mco2.151
[10]

Agost-Beltrán L, de la Hoz-Rodríguez S, Bou-Iserte L, Rodríguez S, Fernández-de-la-Pradilla A, et al. 2022. Advances in the development of SARS-CoV-2 Mpro inhibitors. Molecules 27(8):2523

doi: 10.3390/molecules27082523
[11]

Chen R, Gao Y, Liu H, Li H, Chen W, et al. 2022. Advances in research on 3C-like protease (3CLpro) inhibitors against SARS-CoV-2 since 2020. RSC Medicinal Chemistry 14(1):9−21

doi: 10.1039/d2md00344a
[12]

Zhang L, Lin D, Sun X, Curth U, Drosten C, et al. 2020. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 368(6489):409−12

doi: 10.1126/science.abb3405
[13]

Li L, Huang S. 2021. Newly synthesized Mpro inhibitors as potential oral anti-SARS-CoV-2 agents. Signal Transduction and Targeted Therapy 6(1):138

doi: 10.1038/s41392-021-00560-0
[14]

Qiao J, Li YS, Zeng R, Liu FL, Luo RH, et al. 2021. SARS-CoV-2 Mpro inhibitors with antiviral activity in a transgenic mouse model. Science 371(6536):1374−78

doi: 10.1126/science.abf1611
[15]

Sayed AM, Ibrahim AH, Tajuddeen N, Seibel J, Bodem J, et al. 2023. Korupensamine A, but not its atropisomer, korupensamine B, inhibits SARS-CoV-2 in vitro by targeting its main protease (Mpro). European Journal of Medicinal Chemistry 251:115226

doi: 10.1016/j.ejmech.2023.115226
[16]

Narayanan A, Narwal M, Majowicz SA, Varricchio C, Toner SA, et al. 2022. Identification of SARS-CoV-2 inhibitors targeting Mpro and PLpro using in-cell-protease assay. Communications Biology 5(1):169

doi: 10.1038/s42003-022-03090-9
[17]

Cao W, Cho CCD, Geng ZZ, Shaabani N, Ma XR, et al. 2022. Evaluation of SARS-CoV-2 main protease inhibitors using a novel cell-based assay. ACS Central Science 8(2):192−204

doi: 10.1021/acscentsci.1c00910
[18]

Quan BX, Shuai H, Xia AJ, Hou Y, Zeng R, et al. 2022. An orally available Mpro inhibitor is effective against wild-type SARS-CoV-2 and variants including Omicron. Nature Microbiology 7(5):716−25

doi: 10.1038/s41564-022-01119-7
[19]

Huff S, Kummetha IR, Tiwari SK, Huante MB, Clark AE, et al. 2022. Discovery and mechanism of SARS-CoV-2 main protease inhibitors. Journal of Medicinal Chemistry 65(4):2866−79

doi: 10.1021/acs.jmedchem.1c00566
[20]

Amporndanai K, Meng X, Shang W, Jin Z, Rogers M, et al. 2021. Inhibition mechanism of SARS-CoV-2 main protease by ebselen and its derivatives. Nature Communications 12(1):3061

doi: 10.1038/s41467-021-23313-7
[21]

Xiong Y, Zhu GH, Zhang YN, Hu Q, Wang HN, et al. 2021. Flavonoids in ampelopsis grossedentata as covalent inhibitors of SARS-CoV-2 3CLpro: Inhibition potentials, covalent binding sites and inhibitory mechanisms. International Journal of Biological Macromolecules 187:976−87

doi: 10.1016/j.ijbiomac.2021.07.167