[1]

Raza G, Ali K, Mukhtar Z, Mansoor M, Arshad M, et al. 2010. The response of sugarcane (Sac-charum officinarum L.) genotypes to callus induction, regeneration and different concentrations of the selective agent (geneticin-418). African Journal of Biotechnology 9(51):8739−47

[2]

Hoang NV, Furtado A, Botha FC, Simmons BA, Henry RJ. 2015. Potential for genetic improvement of sugarcane as a source of biomass for biofuels. Frontiers in Bioengineering and Biotechnology 3:182

doi: 10.3389/fbioe.2015.00182
[3]

Manickavasagam M, Ganapathi A, Anbazhagan VR, Sudhakar B, Selvaraj N, et al. 2004. Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrid) uzing axillary buds. Plant Cell Reports 23(3):134−43

doi: 10.1007/s00299-004-0794-y
[4]

Suprasanna P, Patade VY, Desai NS, Devarumath RM, Kawar PG, et al. 2011. Biotechnological developments in sugarcane improvement: an overview. Sugar Tech 13(4):322−35

doi: 10.1007/s12355-011-0103-3
[5]

Li YR, Yang LT. 2015. Sugarcane agriculture and sugar industry in China. Sugar Tech 17:1−8

doi: 10.1007/s12355-014-0342-1
[6]

Parascanu MM, Sanchez N, Sandoval-Salas F, Carreto CM, Soreanu G, et al. 2021. Environmental and economic analysis of bioethanol production from sugarcane molasses and agave juice. Environmental Science and Pollution Research 28(45):64374−93

doi: 10.1007/s11356-021-15471-4
[7]

Viswanathan R, Rao GP. 2011. Disease Scenario and Management of Major Sugarcane Diseases in India. Sugar Tech 13(4):336−353

doi: 10.1007/s12355-011-0102-4
[8]

Srikanth K, Subramonian N, Premachandran MN. 2011. Advances in Transgenic Research for Insect Resistance in Sugarcane. Tropical Plant Biology 4(1):52−61

doi: 10.1007/s12042-011-9077-2
[9]

Priji PJ, Hemaprabha G. 2015. Sugarcane specific drought responsive candidate genes belonging to ABA dependent pathway identified from basic species clones of Saccharum sp. and Erianthus sp. Sugar Tech 17(2):130−37

doi: 10.1007/s12355-014-0313-6
[10]

Mahadevaiah C, Appunu C, Aitken K, Suresha GS, Vignesh P, et al. 2021. Genomic selection in sugarcane: Current Status and future prospects. Frontiers in Plant Science 12:708233

doi: 10.3389/fpls.2021.708233
[11]

Bhat SR, Gill SS. 1985. The implications of 2n egg gametes in nobilization and breeding of sugarcane. Euphytica 34:377−84

doi: 10.1007/BF00022932
[12]

Piperidis G, Piperidis N, D’Hont A. 2010. Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane. Molecular Genetics and Genomics 284:65−73

doi: 10.1007/s00438-010-0546-3
[13]

Grivet L, Arruda P. 2002. Sugarcane genomics: Depicting the complex genome of an important tropical crop. Current Opinion in Plant Biology 5:122−27

doi: 10.1016/S1369-5266(02)00234-0
[14]

Lekshmi M, Pazhany AS, Sobhakumari VP, Premachandran MN. 2017. Nuclear and cytoplasmic contributions from Erianthus arundinaceus (Retz.) Jeswiet in a sugarcane hybrid clone confirmed through genomic in situ hybridization and cytoplasmic DNA polymorphism. Genetic Resoures and Crop Evolution 64:1553−60

doi: 10.1007/s10722-016-0453-5
[15]

Zhang J, Zhang Q, Li L, Tang H, Zhang Q, et al. 2019. Recent polyploidization events in three Saccharum founding species. Plant Biotechnology Journal 17(1):264−74

doi: 10.1111/pbi.12962
[16]

Dong H, Clark LV, Jin X, Anzoua K, Bagmet L, et al. 2021. Managing flowering time in Miscanthus and sugarcane to facilitate intra- and intergeneric crosses. PLoS One 16(1):e0240390

doi: 10.1371/journal.pone.0240390
[17]

Verma KK, Song XP, Budeguer F, Nikpay A, Enrique R, et al. 2022. Genetic engineering: an efficient approach to mitigating biotic and abiotic stresses in sugarcane cultivation. Plant Signaling & Behavior 17(1):2108253

doi: 10.1080/15592324.2022.2108253
[18]

Cheavegatti-Gianotto A, Gentile A, Oldemburgo DA, Merheb GDA, Sereno ML, et al. 2018. Lack of detection of Bt sugarcane Cry1Ab and NptII DNA and proteins in sugarcane processing products including raw sugar. Frontiers in Bioengineering and Biotechnology 6:24

doi: 10.3389/fbioe.2018.00024
[19]

Iqbal A, Khan RS, Khan MA, Gul K, Jalil F, et al. 2021. Genetic Engineering Approaches for Enhanced Insect Pest Resistance in Sugarcane. Molecular Biotechnology 63:557−68

doi: 10.1007/s12033-021-00328-5
[20]

Wang W, Yang B, Cai W, Feng C, Wang J, et al. 2015. Establishment of Mannose Selection System in Sugarcane Transformation. Biotechnology Bulletin 31(1):92−97

doi: 10.13560/j.cnki.biotech.bull.1985.2015.01.014
[21]

Wang WZ, Yang BP, Feng CL, Wang JG, Xiong GR, et al. 2017. Efficient Sugarcane Transformation via bar Gene Selection. Tropical Plant Biology 10(2-3):77−85

doi: 10.1007/s12042-017-9186-7
[22]

Belide S, Vanhercke T, Petrie JR, Singh SP. 2017. Robust genetic transformation of sorghum (Sorghum bicolor L.) using differentiating embryogenic callus induced from immature embryos. Plant Methods 13:109

doi: 10.1186/s13007-017-0260-9
[23]

Ratjens S, Mortensen S, Kumpf A, bartsch M, Winkelmann T. 2018. Embryogenic callus as target for efficient transformation of Cyclamen persicum enabling gene function studies. Frontiers in Plant Science 9:1035

doi: 10.3389/fpls.2018.01035
[24]

Song Y, Bai X, Dong S, Yang Y, Dong H, et al. 2020. Stable and efficient Agrobacterium-mediated genetic transformation of larch using embryogenic callus. Frontiers in Plant Science 11:584492

doi: 10.3389/fpls.2020.584492
[25]

Rakshit S, Rashid Z, Sekhar JC, Fatma T, Dass S. 2010. Callus induction and whole plant regeneration in elite Indian maize (Zea mays L.) Inbreds. Plant Cell Tissue and Organ Culture 100:31−37

doi: 10.1007/s11240-009-9613-z
[26]

Arvinth S, Arun S, Selvakesavan RK, Srikanth J, Mukunthan N, et al. 2010. Genetic transformation and pyramiding of aprotinin-expressing sugarcane with cry1Ab for shoot borer (Chilo infuscatellus) resistance. Plant Cell Reports 29(4):383−95

doi: 10.1007/s00299-010-0829-5
[27]

Basnayake SWV, Moyle R, Birch RG. 2011. Embryogenic callus proliferation and regeneration conditions for genetic transformation of diverse sugarcane cultivars. Plant Cell Reports 30(3):439−48

doi: 10.1007/s00299-010-0927-4
[28]

Zhu YJ, McCafferty H, Osterman G, Lim S, Agbayani R, et al. 2011. Genetic transformation with untranslatable coat protein gene of sugarcane yellow leaf virus reduces virus titers in sugarcane. Transgenic Research 20(3):503−12

doi: 10.1007/s11248-010-9432-3
[29]

Rani K, Sandhu SK, Gosal SS. 2012. Genetic augmentation of sugarcane through direct gene transformation with Osgly II gene construct. Sugar Tech 14(3):229−36

doi: 10.1007/s12355-012-0149-x
[30]

Xiong Y, Jung JH, Zeng QC, Gallo M, Altpeter F. 2013. Comparison of procedures for DNA coating of micro-carriers in the transient and stable biolistic transformation of sugarcane. Plant Cell 112(1):95−99

doi: 10.1007/s11240-012-0208-8
[31]

Santosa DA, Hendroko R, Farouk A, Greiner R. 2004. A rapid and highly efficient method for transformation of sugarcane callus. Molecular Biotechnology 28(2):113−19

doi: 10.1385/MB:28:2:113
[32]

Dong S, Delucca P, Geijskes RJ, Ke J, Mayo K, et al. 2014. Advances in agrobacterium-mediated sugarcane transformation and stable transgene expression. Sugar Tech 16(4):366−71

doi: 10.1007/s12355-013-0294-x
[33]

Wang WZ, Yang BP, Feng XY, Cao ZY, Feng CL, et al. 2017. Development and characterization of transgenic sugarcane with insect resistance and herbicide tolerance. Frontiers in Plant Science 8:1535

doi: 10.3389/fpls.2017.01535
[34]

Stachel SE, Messens E, Van Montagu M, Zambryski P. 1985. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318:624−29

doi: 10.1038/318624a0
[35]

Hiei Y, Ohta S, Komari T, Kumashiro Y. 1994. Efficient transformation of rice (Oryza zativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal 6(2):271−82

doi: 10.1046/j.1365-313X.1994.6020271.x
[36]

Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, et al. 1996. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnology 14:745−50

doi: 10.1038/nbt0696-745
[37]

Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, et al. 1997. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiology 115:971−80

doi: 10.1104/pp.115.3.971
[38]

Sivanandhan G, Kapil Dev G, Theboral J, Selvaraj N, Ganapathi A. 2015. Sonication, vacuum infiltration and thiol compounds enhance the Agrobacterium-mediated transformation frequency of Withania somnifera (L.) Dunal. PLoS One 10(4):e0124693

doi: 10.1371/journal.pone.0124693