[1]

Chen Y, Jia X, Sun F, Jiang S, Liu H, et al. 2020. Using a stable pre-emulsified canola oil system that includes porcine plasma protein hydrolysates and oxidized tannic acid to partially replace pork fat in frankfurters. Meat Science 160:107968

doi: 10.1016/j.meatsci.2019.107968
[2]

Youssef MK, Barbut S, Smith A. 2011. Effects of pre-emulsifying fat/oil on meat batter stability, texture and microstructure. International Journal of Food Science & Technology 46:1216−24

doi: 10.1111/j.1365-2621.2011.02607.x
[3]

Li K, Li Y, Liu CL, Fu L, Zhao YY, et al. 2020. Improving interfacial properties, structure and oxidative stability by ultrasound application to sodium caseinate prepared pre-emulsified soybean oil. LWT 131:109755

doi: 10.1016/j.lwt.2020.109755
[4]

Youssef MK, Barbut S. 2011. Fat reduction in comminuted meat products-effects of beef fat, regular and pre-emulsified canola oil. Meat Science 87:356−60

doi: 10.1016/j.meatsci.2010.11.011
[5]

Wu M, Fei L, Zhuang T, Lei S, Ge Q, et al. 2018. Rheology and microstructure of myofibrillar protein-olive oil composite gels: effect of different non-meat protein as emulsifier. Journal of the Science of Food and Agriculture 98:799−806

doi: 10.1002/jsfa.8528
[6]

Lam RSH, Nickerson MT. 2013. Food proteins: A review on their emulsifying properties using a structure–function approach. Food Chemistry 141:975−84

doi: 10.1016/j.foodchem.2013.04.038
[7]

Seta L, Baldino N, Gabriele D, Lupi FR, de Cindio B. 2014. Rheology and adsorption behaviour of β-casein and β-lactoglobulin mixed layers at the sunflower oil/water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects 441:669−77

doi: 10.1016/j.colsurfa.2013.10.041
[8]

Murray BS, Dickinson E. 1996. Interfacial rheology and the dynamic properties of absorbed and surfactants films of food proteins. Journal of the Japanese Society for Food Science and Technology 43:1239−41

doi: 10.3136/fsti9596t9798.2.131
[9]

Sarma J, Vidya Sagar Reddy G, Srikar LN. 2000. Effect of frozen storage on lipids and functional properties of proteins of dressed Indian oil sardine (Sardinella longiceps). Food Research International 33:815−20

doi: 10.1016/S0963-9969(00)00077-6
[10]

Cao Y, Ai N, True AD, Xiong YL. 2018. Effects of (−)-epigallocatechin-3-gallate incorporation on the physicochemical and oxidative stability of myofibrillar protein–soybean oil emulsions. Food Chemistry 245:439−45

doi: 10.1016/j.foodchem.2017.10.111
[11]

Sun S, Zhang C, Li S, Yan H, Zou H, et al. 2023. Improving emulsifying properties using mixed natural emulsifiers: Tea saponin and golden pompano protein. Colloids and Surfaces A: Physicochemical and Engineering Aspects 656:130311

doi: 10.1016/j.colsurfa.2022.130311
[12]

McClements DJ, Jafari SM. 2018. Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Advances in Colloid and Interface Science 251:55−79

doi: 10.1016/j.cis.2017.12.001
[13]

Wang JM, Xia N, Yang XQ, Yin SW, Qi JR, et al. 2012. Adsorption and dilatational rheology of heat-treated soy protein at the oil-water interface: relationship to structural properties. Journal of Agricultural and Food Chemistry 60:3302−10

doi: 10.1021/jf205128v
[14]

Rodríguez Patino JM, Rodríguez Niño MR, Sánchez CC. 1999. Adsorption of whey protein isolate at the oil-water interface as a function of processing conditions: a rheokinetic study. Journal of Agricultural and Food Chemistry 47:2241−48

doi: 10.1021/jf981119i
[15]

Xiong W, Ren C, Tian M, Yang X, Li J, et al. 2018. Emulsion stability and dilatational viscoelasticity of ovalbumin/chitosan complexes at the oil-in-water interface. Food Chemistry 252:181−88

doi: 10.1016/j.foodchem.2018.01.067
[16]

Ma W, Wang J, Wu D, Xu X, Du M, et al. 2021. Effects of preheat treatment on the physicochemical and interfacial properties of cod proteins and its relation to the stability of subsequent emulsions. Food Hydrocolloids 112:106338

doi: 10.1016/j.foodhyd.2020.106338
[17]

Peng W, Kong X, Chen Y, Zhang C, Yang Y, et al. 2016. Effects of heat treatment on the emulsifying properties of pea proteins. Food Hydrocolloids 52:301−310

doi: 10.1016/j.foodhyd.2015.06.025
[18]

Kim HJ, Decker EA, McClements DJ. 2005. Influence of protein concentration and order of addition on thermal stability of β-lactoglobulin stabilized n-Hexadecane oil-in-water emulsions at neutral pH. Langmuir 21:134−39

doi: 10.1021/la048019t
[19]

Lu J, Zhang W, Zhao X, Xu X. 2022. Comparison of the interfacial properties of native and refolded myofibrillar proteins subjected to pH-shifting. Food Chemistry 380:131734

doi: 10.1016/j.foodchem.2021.131734
[20]

Han Z, Cai M, Cheng J, Sun D. 2021. Effects of constant power microwave on the adsorption behaviour of myofibril protein to aldehyde flavour compounds. Food Chemistry 336:127728

doi: 10.1016/j.foodchem.2020.127728
[21]

Cai B, Saito A, Ikeda S. 2018. Maillard conjugation of sodium alginate to whey protein for enhanced resistance to surfactant-induced competitive displacement from air–water interfaces. Journal of Agricultural and Food Chemistry 66:704−10

doi: 10.1021/acs.jafc.7b04387
[22]

Xu X, Sun Q, McClements DJ. 2019. Enhancing the formation and stability of emulsions using mixed natural emulsifiers: Hydrolyzed rice glutelin and quillaja saponin. Food Hydrocolloids 89:396−405

doi: 10.1016/j.foodhyd.2018.11.020
[23]

Lin L, Xiong YL. 2021. Competitive adsorption and dilatational rheology of pork myofibrillar and sarcoplasmic proteins at the O/W emulsion interface. Food Hydrocolloids 118:106816

doi: 10.1016/j.foodhyd.2021.106816
[24]

Lucey JA, Horne DS. 2018. Perspectives on casein interactions. International Dairy Journal 85:56−65

doi: 10.1016/j.idairyj.2018.04.010
[25]

Corzo-Martínez M, Carrera-Sánchez C, Villamiel M, Rodríguez-Patino JM, Moreno FJ. 2012. Assessment of interfacial and foaming properties of bovine sodium caseinate glycated with galactose. Journal of Food Engineering 113:461−70

doi: 10.1016/j.jfoodeng.2012.06.025
[26]

Zhang M, Fan L, Liu Y, Li J. 2023. Migration of gallic acid from the aqueous phase to the oil–water interface using pea protein to improve the physicochemical stability of water–in–oil emulsions. Food Hydrocolloids 135:108179

doi: 10.1016/j.foodhyd.2022.108179
[27]

Daniloski D, McCarthy NA, Auldist MJ, Vasiljevic T. 2022. Properties of sodium caseinate as affected by the β-casein phenotypes. Journal of Colloid and Interface Science 626:939−50

doi: 10.1016/j.jcis.2022.07.021
[28]

Wang J, Wang A, Zang X, Tan L, Xu B, et al. 2019. Physicochemical, functional and emulsion properties of edible protein from avocado (Persea americana Mill.) oil processing by-products. Food Chemistry 288:146−53

doi: 10.1016/j.foodchem.2019.02.098
[29]

Kato A, Komatsu K, Fujimoto K, Kobayashi K. 1985. Relationship between surface functional properties and flexibility of proteins detected by the protease susceptibility. Journal of Agricultural and Food Chemistry 33:931−34

doi: 10.1021/jf00065a039
[30]

Nishinari K, Fang Y, Guo S, Phillips GO. 2014. Soy proteins: A review on composition, aggregation and emulsification. Food Hydrocolloids 39:301−18

doi: 10.1016/j.foodhyd.2014.01.013
[31]

Damodaran S. 2005. Protein Stabilization of Emulsions and Foams. Journal of Food Science 70:R54−R66

doi: 10.1111/j.1365-2621.2005.tb07150.x
[32]

Li H, Li F, Wu X, Wu W. 2021. Effect of rice bran rancidity on the emulsion stability of rice bran protein and structural characteristics of interface protein. Food Hydrocolloids 121:107006

doi: 10.1016/j.foodhyd.2021.107006
[33]

Wu X, Li F, Wu W. 2020. Effects of rice bran rancidity on the oxidation and structural characteristics of rice bran protein. LWT 120:108943

doi: 10.1016/j.lwt.2019.108943
[34]

Kotsmar C, Pradines V, Alahverdjieva VS, Aksenenko EV, Fainerman VB, et al. 2009. Thermodynamics, adsorption kinetics and rheology of mixed protein–surfactant interfacial layers. Advances in Colloid and Interface Science 150:41−54

doi: 10.1016/j.cis.2009.05.002
[35]

Liu L, Zhao Q, Liu T, Zhao M. 2011. Dynamic surface pressure and dilatational viscoelasticity of sodium caseinate/xanthan gum mixtures at the oil–water interface. Food Hydrocolloids 25:921−927

doi: 10.1016/j.foodhyd.2010.08.023
[36]

Graham DE, Phillips MC. 1979. Proteins at liquid interfaces: III. Molecular structures of adsorbed films. Journal of Colloid and Interface Science 70:427−439

doi: 10.1016/0021-9797(79)90050-X
[37]

Macritchie F. 1978. Proteins at Interfaces. In Advances in Protein Chemistry, eds. Anfinsen CB, Edsall JT, Richards FM. vol 32. Academic Press. pp. 283−326. https://doi.org/10.1016/S0065-3233(08)60577-X

[38]

Lian Z, Yang S, Cheng L, Liao P, Dai S, et al. 2023. Emulsifying properties and oil–water interface properties of succinylated soy protein isolate: Affected by conformational flexibility of the interfacial protein. Food Hydrocolloids 136:108224

doi: 10.1016/j.foodhyd.2022.108224
[39]

Liu G, Hu M, Du X, Yan S, Liao Y, et al. 2022. Effects of succinylation and chitosan assembly at the interface layer on the stability and digestion characteristics of soy protein isolate-stabilized quercetin emulsions. LWT 154:112812

doi: 10.1016/j.lwt.2021.112812
[40]

Benjamins J, Cagna A, Lucassen-Reynders EH. 1996. Viscoelastic properties of triacylglycerol/water interfaces covered by proteins. Colloids and Surfaces A: Physicochemical and Engineering Aspects 114:245−54

doi: 10.1016/0927-7757(96)03533-9
[41]

Han Z, Xu S, Sun J, Yue X, Wu Z, et al. 2021. Effects of fatty acid saturation degree on salt-soluble pork protein conformation and interfacial adsorption characteristics at the oil/water interface. Food Hydrocolloids 113:106472

doi: 10.1016/j.foodhyd.2020.106472
[42]

Rodríguez Patino JM, Rodríguez Niño MR, Carrera Sánchez C. 1999. Dynamic interfacial rheology as a tool for the characterization of whey protein isolates gelation at the oil−water interface. Journal of Agricultural and Food Chemistry 47:3640−48

doi: 10.1021/jf981164q
[43]

Liao W, Elaissari A, Dumas E, Gharsallaoui A. 2023. Effect of trans-cinnamaldehyde or citral on sodium caseinate: Interfacial rheology and fluorescence quenching properties. Food Chemistry 400:134044

doi: 10.1016/j.foodchem.2022.134044
[44]

Whitby CP, Fornasiero D, Ralston J, Liggieri L, Ravera F. 2012. Properties of Fatty Amine–Silica Nanoparticle Interfacial Layers at the Hexane–Water Interface. The Journal of Physical Chemistry C 116:3050−58

doi: 10.1021/jp210870v
[45]

Han Z, Yue X, Shao JH. 2022. The adsorption characteristics of 2D fibril and 3D hydrogel aggregates at the O/W interface combining molecular dynamics simulation. Food Hydrocolloids 128:107537

doi: 10.1016/j.foodhyd.2022.107537
[46]

Freer EM, Yim KS, Fuller GG, Radke CJ. 2004. Interfacial Rheology of Globular and Flexible Proteins at the Hexadecane/Water Interface:   Comparison of Shear and Dilatation Deformation. The Journal of Physical Chemistry B 108:3835−44

doi: 10.1021/jp037236k
[47]

Alahverdjieva VS, Fainerman VB, Aksenenko EV, Leser ME, Miller R. 2008. Adsorption of hen egg-white lysozyme at the air–water interface in presence of sodium dodecyl sulphate. Colloids and Surfaces A: Physicochemical and Engineering Aspects 317:610−17

doi: 10.1016/j.colsurfa.2007.11.062
[48]

Zhai J, Miles AJ, Pattenden LK, Lee TH, Augustin MA, et al. 2010. Changes in β-Lactoglobulin Conformation at the Oil/Water Interface of Emulsions Studied by Synchrotron Radiation Circular Dichroism Spectroscopy. Biomacromolecules 11:2136−42

doi: 10.1021/bm100510j
[49]

Xu S, Damodaran S. 1994. Kinetics of Adsorption of Proteins at the Air-Water Interface From a Binary Mixture. Langmuir 10:472−80

doi: 10.1021/la00014a022
[50]

Li H, Cai Y, Li F, Zhang B, Wu X, et al. 2022. Rancidity-induced protein oxidation affects the interfacial dynamic properties and the emulsion rheological behavior of rice bran protein. Food Hydrocolloids 131:107794

doi: 10.1016/j.foodhyd.2022.107794
[51]

Aguilera-Garrido A, del Castillo-Santaella T, Yang Y, Galisteo-González F, Gálvez-Ruiz MJ, et al. 2021. Applications of serum albumins in delivery systems: Differences in interfacial behaviour and interacting abilities with polysaccharides. Advances in Colloid and Interface Science 290:102365

doi: 10.1016/j.cis.2021.102365
[52]

Dickinson E. 1999. Adsorbed protein layers at fluid interfaces: interactions, structure and surface rheology. Colloids and Surfaces B: Biointerfaces 15:161−76

doi: 10.1016/S0927-7765(99)00042-9
[53]

Torcello-Gómez A, Maldonado-Valderrama J, Jódar-Reyes AB, Cabrerizo-Vílchez MA, Martín-Rodríguez A. 2014. Pluronic-covered oil–water interfaces under simulated duodenal conditions. Food Hydrocolloids 34:54−61

doi: 10.1016/j.foodhyd.2012.12.026
[54]

Dickinson E, Horne DS, Phipps JS, Richardson RM. 1993. A neutron reflectivity study of the adsorption of beta. -casein at fluid interfaces. Langmuir 9:242−48

doi: 10.1021/la00025a046
[55]

Yao X, Xu K, Shu M, Liu N, Li N, et al. 2021. Fabrication of iron loaded whey protein isolate/gum Arabic nanoparticles and its adsorption activity on oil-water interface. Food Hydrocolloids 115:106610

doi: 10.1016/j.foodhyd.2021.106610
[56]

Gaonkar AG. 1989. Interfacial tensions of vegetable oil/water systems: Effect of oil purification. Journal of the American Oil Chemists' Society 66:1090−92

doi: 10.1007/BF02670090
[57]

Cai R, Yang Z, Li Z, Wang P, Han M, et al. 2022. Nano filling effect of nonmeat protein emulsion on the rheological property of myofibrillar protein gel. Foods 11:629

doi: 10.3390/foods11050629
[58]

Gornall AG, Bardawill CJ, David MM. 1949. Determination of serum proteins by means of the biuret reaction. The Journal of Biological Chemistry 177:751−66

doi: 10.1016/S0021-9258(18)57021-6
[59]

Guo XY, Peng ZQ, Zhang YW, Liu B, Cui YQ. 2015. The solubility and conformational characteristics of porcine myosin as affected by the presence of ʟ-lysine and ʟ-histidine. Food Chemistry 170:212−217

doi: 10.1016/j.foodchem.2014.08.045
[60]

Ellman GL. 1959. Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics 82:70−77

doi: 10.1016/0003-9861(59)90090-6
[61]

Kristinsson HG, Hultin HO. 2003. Changes in conformation and subunit assembly of cod myosin at low and high pH and after subsequent refolding. Journal of Agricultural and Food Chemistry 51:7187−7196

doi: 10.1021/jf026193m