[1]

Oladejo AO, Ma H, Qu W, Zhou C, Wu B, et al. 2017. Influence of ultrasound pretreatments on diffusion coefficients, texture and colour of osmodehydrated sweet potato (Ipomea batatas). International Journal of Food Science & Technology 52:888−96

doi: 10.1111/ijfs.13352
[2]

Mewa EA, Okoth MW, Kunyanga CN, Rugiri MN. 2019. Experimental evaluation of beef drying kinetics in a solar tunnel dryer. Renewable Energy 139:235−41

doi: 10.1016/j.renene.2019.02.067
[3]

Ikrang EG, Umani KC. 2019. Optimization of process conditions for drying of catfish (Clarias gariepinus) using Response Surface Methodology (RSM). Food Science and Human Wellness 8:46−52

doi: 10.1016/j.fshw.2019.01.002
[4]

Wang D, Zhang M, Ju R, Mujumdar AS, Yu D. 2022. Novel drying techniques for controlling microbial contamination in fresh food: a review. Drying Technology 41:172−89

doi: 10.1080/07373937.2022.2080704
[5]

Zhang M, Chen H, Mujumdar AS, Tang J, Miao S, et al. 2017. Recent developments in high-quality drying of vegetables, fruits, and aquatic products. Critical Reviews in Food Science and Nutrition 57:1239−55

doi: 10.1080/10408398.2014.979280
[6]

Khaing Hnin K, Zhang M, Mujumdar AS, Zhu Y. 2019. Emerging food drying technologies with energy-saving characteristics: a review. Drying Technology 37:1465−80

doi: 10.1080/07373937.2018.1510417
[7]

Cárcel JA, García-Pérez JV, Riera E, Mulet A. 2007. Influence of high-intensity ultrasound on drying kinetics of persimmon. Drying Technology 25:185−93

doi: 10.1080/07373930601161070
[8]

Osae R, Essilfie G, Alolga RN, Akaba S, Song X, et al. 2020. Application of non-thermal pretreatment techniques on agricultural products prior to drying: a review. Journal of the Science of Food and Agriculture 100:2585−99

doi: 10.1002/jsfa.10284
[9]

Nyangena I, Owino W, Ambuko J, Imathiu S. 2019. Effect of selected pretreatments prior to drying on physical quality attributes of dried mango chips. Journal of Food Science and Technology 56:3854−63

doi: 10.1007/s13197-019-03857-9
[10]

Bao T, Hao X, Shishir MRI, Karim N, Chen W. 2022. Green alternative methods for pretreatment of whole jujube before the drying process. Journal of the Science of Food and Agriculture 102:1030−39

doi: 10.1002/jsfa.11438
[11]

Deng L, Mujumdar AS, Zhang Q, Yang X, Wang J, et al. 2019. Chemical and physical pretreatments of fruits and vegetables: effects on drying characteristics and quality attributes – a comprehensive review. Critical Reviews in Food Science and Nutrition 59:1408−32

doi: 10.1080/10408398.2017.1409192
[12]

Srimagal A, Mishra S, Pradhan RC. 2017. Effects of ethyl oleate and microwave blanching on drying kinetics of bitter gourd. Journal of Food Science and Technology 54:1192−98

doi: 10.1007/s13197-017-2518-7
[13]

Huang D, Men K, Li D, Wen T, Gong Z, et al. 2020. Application of ultrasound technology in the drying of food products. Ultrasonics Sonochemistry 63:104950

doi: 10.1016/j.ultsonch.2019.104950
[14]

Chen Y, Cheng J, Sun D. 2020. Chemical, physical and physiological quality attributes of fruit and vegetables induced by cold plasma treatment: mechanisms and application advances. Critical Reviews in Food Science and Nutrition 60:2676−90

doi: 10.1080/10408398.2019.1654429
[15]

Arshad RN, Abdul-Malek Z, Roobab U, Munir MA, Naderipour A, et al. 2021. Pulsed electric field: a potential alternative towards a sustainable food processing. Trends in Food Science & Technology 111:43−54

doi: 10.1016/j.jpgs.2021.02.041
[16]

Bassey EJ, Cheng J, Sun D. 2021. Novel nonthermal and thermal pretreatments for enhancing drying performance and improving quality of fruits and vegetables. Trends in Food Science & Technology 112:137−48

doi: 10.1016/j.jpgs.2021.03.045
[17]

Onwude DI, Hashim N, Janius R, Abdan K, Chen G, et al. 2017. Non-thermal hybrid drying of fruits and vegetables: a review of current technologies. Innovative Food Science & Emerging Technologies 43:223−38

doi: 10.1016/j.ifset.2017.08.010
[18]

Scholtz V, Pazlarova J, Souskova H, Khun J, Julak J. 2015. Nonthermal plasma — a tool for decontamination and disinfection. Biotechnology Advances 33:1108−19

doi: 10.1016/j.biotechadv.2015.01.002
[19]

Warne GR, Williams PM, Pho HQ, Tran NN, Hessel V, et al. 2021. Impact of cold plasma on the biomolecules and organoleptic properties of foods: a review. Journal of Food Science 86:3762−77

doi: 10.1111/1750-3841.15856
[20]

Miraei Ashtiani SH, Rafiee M, Mohebi Morad M, Khojastehpour M, Khani MR, et al. 2020. Impact of gliding arc plasma pretreatment on drying efficiency and physicochemical properties of grape. Innovative Food Science & Emerging Technologies 63:102381

doi: 10.1016/j.ifset.2020.102381
[21]

Zhao YM, de Alba M, Sun DW, Tiwari B. 2019. Principles and recent applications of novel non-thermal processing technologies for the fish industry—a review. Critical Reviews in Food Science and Nutrition 59:728−42

doi: 10.1080/10408398.2018.1495613
[22]

Waghmare R. 2021. Cold plasma technology for fruit based beverages: a review. Trends in Food Science & Technology 114:60−69

doi: 10.1016/j.jpgs.2021.05.018
[23]

Moutiq R, Misra NN, Mendonca A, Keener K. 2020. In-package decontamination of chicken breast using cold plasma technology: microbial, quality and storage studies. Meat Science 159:107942

doi: 10.1016/j.meatsci.2019.107942
[24]

Charoux CMG, Free L, Hinds LM, Vijayaraghavan RK, Daniels S, et al. 2019. Effect of non-thermal plasma technology on microbial inactivation and total phenolic content of model liquid food and black pepper grains. LWT 118:108716

doi: 10.1016/j.lwt.2019.108716
[25]

Laput OA, Vasenina IV, Botvin VV, Kurzina IA. 2022. Surface modification of polylactic acid by ion, electron beams and low-temperature plasma: a review. Journal of Materials Science 57:2335−61

doi: 10.1007/s10853-021-06687-3
[26]

Laput O, Vasenina I, Salvadori MC, Savkin K, Zuza D, et al. 2019. Low-temperature plasma treatment of polylactic acid and PLA/HA composite material. Journal of Materials Science 54:11726−38

doi: 10.1007/s10853-019-03693-4
[27]

Mu X, Wang X, Zhang Y, Liu B, Yang J. 2021. Major products and their formation and transformation mechanism through degrading UDMH wastewater via DBD low temperature plasma. Environmental Technology 42:2709−20

doi: 10.1080/09593330.2019.1710573
[28]

Jung S, Lee J, Lim Y, Choe W, Yong HI, et al. 2017. Direct infusion of nitrite into meat batter by atmospheric pressure plasma treatment. Innovative Food Science & Emerging Technologies 39:113−18

doi: 10.1016/j.ifset.2016.11.010
[29]

Hertwig C, Meneses N, Mathys A. 2018. Cold atmospheric pressure plasma and low energy electron beam as alternative nonthermal decontamination technologies for dry food surfaces: a review. Trends in Food Science & Technology 77:131−42

doi: 10.1016/j.jpgs.2018.05.011
[30]

Mandal R, Singh A, Pratap Singh A. 2018. Recent developments in cold plasma decontamination technology in the food industry. Trends in Food Science & Technology 80:93−103

doi: 10.1016/j.jpgs.2018.07.014
[31]

Guo C, Tang F, Chen J, Wang X, Zhang S, et al. 2015. Development of dielectric-barrier-discharge ionization. Analytical and Bioanalytical Chemistry 407:2345−64

doi: 10.1007/s00216-014-8281-y
[32]

Wang J, Zhuang H, Zhang J. 2016. Inactivation of spoilage bacteria in package by dielectric barrier discharge atmospheric cold plasma—treatment time effects. Food Bioprocess Technol 9:1648−52

doi: 10.1007/s11947-016-1746-6
[33]

Feizollahi E, Misra NN, Roopesh MS. 2021. Factors influencing the antimicrobial efficacy of Dielectric Barrier Discharge (DBD) Atmospheric Cold Plasma (ACP) in food processing applications. Critical Reviews in Food Science and Nutrition 61:666−89

doi: 10.1080/10408398.2020.1743967
[34]

Zhang X, Zhong C, Mujumdar AS, Yang X, Deng L, et al. 2019. Cold plasma pretreatment enhances drying kinetics and quality attributes of chili pepper (Capsicum annuum L.). Journal of Food Engineering 241:51−57

doi: 10.1016/j.jfoodeng.2018.08.002
[35]

Du Y, Yang F, Yu H, Xie Y, Yao W. 2022. Improving food drying performance by cold plasma pretreatment: a systematic review. Comprehensive Reviews in Food Science and Food Safety 21:4402−21

doi: 10.1111/1541-4337.13027
[36]

Namjoo M, Moradi M, Dibagar N, Niakousari M. 2022. Cold plasma pretreatment prior to ultrasound-assisted air drying of cumin seeds. Food and Bioprocess Technology 15:2065−83

doi: 10.1007/s11947-022-02863-8
[37]

da C. Loureiro A, das C. do A. Souza F, Sanches EA, Bezerra JA, Lamarão CV, et al. 2021. Cold plasma technique as a pretreatment for drying fruits: evaluation of the excitation frequency on drying process and bioactive compounds. Food Research International 147:110462

doi: 10.1016/j.foodres.2021.110462
[38]

Karim N, Shishir MRI, Bao T, Chen W. 2021. Effect of cold plasma pretreated hot-air drying on the physicochemical characteristics, nutritional values and antioxidant activity of shiitake mushroom. Journal of the Science of Food and Agriculture 101:6271−80

doi: 10.1002/jsfa.11296
[39]

Cao Y, Hua H, Yang P, Chen M, Chen W, et al. 2020. Investigation into the reaction mechanism underlying the atmospheric low-temperature plasma-induced oxidation of cellulose. Carbohydrate Polymers 233:115632

doi: 10.1016/j.carbpol.2019.115632
[40]

Momeni M, Tabibiazar M, Khorram S, Zakerhamidi M, Mohammadifar M, et al. 2018. Pectin modification assisted by nitrogen glow discharge plasma. International Journal of Biological Macromolecules 120:2572−78

doi: 10.1016/j.ijbiomac.2018.09.033
[41]

Punia Bangar S, Trif M, Ozogul F, Kumar M, Chaudhary V, et al. 2022. Recent developments in cold plasma-based enzyme activity (browning, cell wall degradation, and antioxidant) in fruits and vegetables. Comprehensive Reviews in Food Science and Food Safety 21:1958−78

doi: 10.1111/1541-4337.12895
[42]

Vivek K, Suranjoy Singh S, Ritesh W, Soberly M, Baby Z, et al. 2019. A review on postharvest management and advances in the minimal processing of fresh-cut fruits and vegetables. Journal of Microbiology, Biotechnology and Food Sciences 8:1178−87

doi: 10.15414/jmbfs.2019.8.5.1178-1187
[43]

Xu L, Garner AL, Tao B, Keener KM. 2017. Microbial inactivation and quality changes in orange juice treated by high voltage atmospheric cold plasma. Food and Bioprocess Technology 10:1778−91

doi: 10.1007/s11947-017-1947-7
[44]

Zhang Y, He S, Simpson BK. 2018. Enzymes in food bioprocessing—novel food enzymes, applications, and related techniques. Current Opinion in Food Science 19:30−35

doi: 10.1016/j.cofs.2017.12.007
[45]

Ke Z, Huang Q. 2013. Inactivation and heme degradation of horseradish peroxidase induced by discharge plasma. Plasma Processes and Polymers 10:731−39

doi: 10.1002/ppap.201300035
[46]

Chutia H, Kalita D, Mahanta CL, Ojah N, Choudhury AJ. 2019. Kinetics of inactivation of peroxidase and polyphenol oxidase in tender coconut water by dielectric barrier discharge plasma. LWT 101:625−29

doi: 10.1016/j.lwt.2018.11.071
[47]

Gu Y, Shi W, Liu R, Xing Y, Yu X, et al. 2021. Cold plasma enzyme inactivation on dielectric properties and freshness quality in bananas. Innovative Food Science & Emerging Technologies 69:102649

doi: 10.1016/j.ifset.2021.102649
[48]

Tappi S, Gozzi G, Vannini L, Berardinelli A, Romani S, et al. 2016. Cold plasma treatment for fresh-cut melon stabilization. Innovative Food Science & Emerging Technologies 33:225−33

doi: 10.1016/j.ifset.2015.12.022
[49]

Zhang Y, Zhang J, Zhang Y, Hu H, Luo S, et al. 2021. Effects of in-package atmospheric cold plasma treatment on the qualitative, metabolic and microbial stability of fresh-cut pears. Journal of the Science of Food and Agriculture 101:4473−80

doi: 10.1002/jsfa.11085
[50]

Asnavandi A, Barzin G, Mahabadi TD, Entezari M, Pishkar L. 2022. Low temperature plasma affects physiological and genetic attributes of Foeniculum vulgare. Russian Journal of Plant Physiology 69:33

doi: 10.1134/S1021443722020029
[51]

Jin X, Liu Z, Wu W. 2023. POD, CAT and SOD enzyme activity of corn kernels as affected by low plasma pretreatment. International Journal of Food Properties 26:38−48

doi: 10.1080/10942912.2022.2151619
[52]

Ji Y, Hu W, Liao J, Jiang A, Xiu Z, et al. 2020. Effect of atmospheric cold plasma treatment on antioxidant activities and reactive oxygen species production in postharvest blueberries during storage. Journal of the Science of Food and Agriculture 100:5586−95

doi: 10.1002/jsfa.10611
[53]

Bao T, Hao X, Shishir MRI, Karim N, Chen W. 2021. Cold plasma: an emerging pretreatment technology for the drying of jujube slices. Food Chemistry 337:127783

doi: 10.1016/j.foodchem.2020.127783
[54]

Zhou Y, Vidyarthi SK, Zhong C, Zheng Z, An Y, et al. 2020. Cold plasma enhances drying and color, rehydration ratio and polyphenols of wolfberry via microstructure and ultrastructure alteration. LWT 134:110173

doi: 10.1016/j.lwt.2020.110173
[55]

Zhu B, Wen X, Wei G. 2014. Effect of pre-treatments on drying characteristics of Chinese jujube (Zizyphus jujuba Miller). International Journal of Agricultural and Biological Engineering 7:94−102

doi: 10.3965/j.ijabe.20140701.011
[56]

Hariharan S, Patti A, Arora A. 2023. Functional proteins from biovalorization of peanut meal: Advances in process technology and applications. Plant Foods for Human Nutrition 78:13−24

doi: 10.1007/s11130-022-01040-8
[57]

Li J, Li Z, Ma Q, Zhou Y. 2023. Enhancement of anthocyanins extraction from haskap by cold plasma pretreatment. Innovative Food Science & Emerging Technologies 84:103294

doi: 10.1016/j.ifset.2023.103294
[58]

Tabibian SA, Labbafi M, Askari GH, Rezaeinezhad AR, Ghomi H. 2020. Effect of gliding arc discharge plasma pretreatment on drying kinetic, energy consumption and physico-chemical properties of saffron (Crocus sativus L.). Journal of Food Engineering 270:109766

doi: 10.1016/j.jfoodeng.2019.109766
[59]

Miraei Ashtiani SH, Rafiee M, Mohebi Morad M, Martynenko A. 2022. Cold plasma pretreatment improves the quality and nutritional value of ultrasound-assisted convective drying: the case of goldenberry. Drying Technology 40:1639−57

doi: 10.1080/07373937.2022.2050255
[60]

Huang CC, Wu JSB, Wu JS, Ting Y. 2019. Effect of novel atmospheric-pressure jet pretreatment on the drying kinetics and quality of white grapes. Journal of the Science of Food and Agriculture 99:5102−11

doi: 10.1002/jsfa.9754
[61]

Shishir MRI, Karim N, Bao T, Gowd V, Ding T, et al. 2020. Cold plasma pretreatment – a novel approach to improve the hot air drying characteristics, kinetic parameters, and nutritional attributes of shiitake mushroom. Drying Technology 38:2134−50

doi: 10.1080/07373937.2019.1683860
[62]

Misra NN, Jo C. 2017. Applications of cold plasma technology for microbiological safety in meat industry. Trends in Food Science & Technology 64:74−86

doi: 10.1016/j.jpgs.2017.04.005
[63]

Bourke P, Ziuzina D, Boehm D, Cullen PJ, Keener K. 2018. The potential of cold plasma for safe and sustainable food production. Trends in Biotechnology 36:615−26

doi: 10.1016/j.tibtech.2017.11.001
[64]

Sarangapani C, Ryan Keogh D, Dunne J, Bourke P, Cullen PJ. 2017. Characterisation of cold plasma treated beef and dairy lipids using spectroscopic and chromatographic methods. Food Chemistry 235:324−33

doi: 10.1016/j.foodchem.2017.05.016
[65]

Fröhling A, Durek J, Schnabel U, Ehlbeck J, Bolling J, et al. 2012. Indirect plasma treatment of fresh pork: Decontamination efficiency and effects on quality attributes. Innovative Food Science & Emerging Technologies 16:381−90

doi: 10.1016/j.ifset.2012.09.001
[66]

Muhammad AI, Liao X, Cullen PJ, Liu D, Xiang Q, et al. 2018. Effects of nonthermal plasma technology on functional food components. Comprehensive Reviews in Food Science and Food Safety 17:1379−94

doi: 10.1111/1541-4337.12379
[67]

Tresp H, Hammer MU, Weltmann KD, Reuter S. 2013. Effects of atmosphere composition and liquid type on plasma-generated reactive species in biologically relevant solutions. Plasma Medicine 3:45−55

doi: 10.1615/plasmamed.2014009711
[68]

Bisag A, Bucci C, Coluccelli S, Girolimetti G, Laurita R, et al. 2020. Plasma-activated Ringer’s lactate solution displays a selective cytotoxic effect on ovarian cancer cells. Cancers 12:476

doi: 10.3390/cancers12020476
[69]

Chen Z, Lin L, Cheng X, Gjika E, Keidar M. 2016. Effects of cold atmospheric plasma generated in deionized water in cell cancer therapy. Plasma Processes and Polymers 13:1151−56

doi: 10.1002/ppap.201600086
[70]

Patange A, Boehm D, Giltrap M, Lu P, Cullen PJ, et al. 2018. Assessment of the disinfection capacity and eco-toxicological impact of atmospheric cold plasma for treatment of food industry effluents. Science of The Total Environment 631–632:298−307

doi: 10.1016/j.scitotenv.2018.02.269
[71]

Wende K, von Woedtke T, Weltmann KD, Bekeschus S. 2018. Chemistry and biochemistry of cold physical plasma derived reactive species in liquids. Biological Chemistry 400:19−38

doi: 10.1515/hsz-2018-0242
[72]

Arvanitoyannis IS, Kotsanopoulos KV, Savva AG. 2017. Use of ultrasounds in the food industry–methods and effects on quality, safety, and organoleptic characteristics of foods: a review. Critical Reviews in Food Science and Nutrition 57:109−28

doi: 10.1080/10408398.2013.860514
[73]

Dolatowski ZJ, Stadnik J, Stasiak D. 2007. Applications of ultrasound in food technology. Acta Scientiarum Polonorum Technologia Alimentaria 6:88−99

[74]

Gallo M, Ferrara L, Naviglio D. 2018. Application of ultrasound in food science and technology: a perspective. Foods 7:164

doi: 10.3390/foods7100164
[75]

Ahmad F, Mohammad ZH, Zaidi S, Ibrahim SA. 2023. A comprehensive review on the application of ultrasound for the preservation of fruits and vegetables. Journal of Food Process Engineering 46:e14291

doi: 10.1111/jfpe.14291
[76]

Mothibe KJ, Zhang M, Nsor-atindana J, Wang Y. 2011. Use of ultrasound pretreatment in drying of fruits: drying rates, quality attributes, and shelf life extension. Drying Technology 29:1611−21

doi: 10.1080/07373937.2011.602576
[77]

Wang L, Xu B, Wei B, Zeng R. 2018. Low frequency ultrasound pretreatment of carrot slices: effect on the moisture migration and quality attributes by intermediate-wave infrared radiation drying. Ultrasonics Sonochemistry 40:619−28

doi: 10.1016/j.ultsonch.2017.08.005
[78]

Tao Y, Sun DW. 2015. Enhancement of food processes by ultrasound: a review. Critical Reviews in Food Science and Nutrition 55:570−94

doi: 10.1080/10408398.2012.667849
[79]

Patist A, Bates D. 2008. Ultrasonic innovations in the food industry: from the laboratory to commercial production. Innovative Food Science & Emerging Technologies 9:147−54

doi: 10.1016/j.ifset.2007.07.004
[80]

Soria AC, Villamiel M. 2010. Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends in Food Science & Technology 21:323−31

doi: 10.1016/j.jpgs.2010.04.003
[81]

Rodríguez Ó, Eim V, Rosselló C, Femenia A, Cárcel JA, et al. 2018. Application of power ultrasound on the convective drying of fruits and vegetables: effects on quality. Journal of the Science of Food and Agriculture 98:1660−73

doi: 10.1002/jsfa.8673
[82]

Oladejo AO, Ma H. 2016. Optimisation of ultrasound-assisted osmotic dehydration of sweet potato (Ipomea batatas) using response surface methodology. Journal of the Science of Food and Agriculture 96:3688−93

doi: 10.1002/jsfa.7552
[83]

Su D, Sun W, Li B, Yang Y, Wang Y, et al. 2022. Influence of ultrasonic pretreatments on microwave hot-air flow rolling drying mechanism, thermal characteristics and rehydration dynamics of Pleurotus eryngii. Journal of the Science of Food and Agriculture 102:2100−09

doi: 10.1002/jsfa.11551
[84]

Bozkir H, Rayman Ergün A, Serdar E, Metin G, Baysal T. 2019. Influence of ultrasound and osmotic dehydration pretreatments on drying and quality properties of persimmon fruit. Ultrasonics Sonochemistry 54:135−41

doi: 10.1016/j.ultsonch.2019.02.006
[85]

Azoubel PM, da Rocha Amorim M, Oliveira SSB, Maciel MIS, Rodrigues JD. 2015. Improvement of water transport and carotenoid retention during drying of papaya by applying ultrasonic osmotic pretreatment. Food Engineering Reviews 7:185−92

doi: 10.1007/s12393-015-9120-4
[86]

Jin W, Zhang M, Shi W. 2019. Evaluation of ultrasound pretreatment and drying methods on selected quality attributes of bitter melon (Momordica charantia L.). Drying Technology 37:387−96

doi: 10.1080/07373937.2018.1458735
[87]

Xu B, Chen J, Sylvain Tiliwa E, Yan W, Roknul Azam SM, et al. 2021. Effect of multi-mode dual-frequency ultrasound pretreatment on the vacuum freeze-drying process and quality attributes of the strawberry slices. Ultrasonics Sonochemistry 78:105714

doi: 10.1016/j.ultsonch.2021.105714
[88]

Chen L, Feng X, Zhang Y, Liu X, Zhang W, et al. 2015. Effects of ultrasonic processing on caspase-3, calpain expression and myofibrillar structure of chicken during post-mortem ageing. Food Chemistry 177:280−87

doi: 10.1016/j.foodchem.2014.11.064
[89]

Reyes-Villagrana RA, Huerta-Jimenez M, Salas-Carrazco JL, Carrillo-Lopez LM, Alarcon-Rojo AD, et al. 2020. High-intensity ultrasonication of rabbit carcases: a first glance into a small-scale model to improve meat quality traits. Italian Journal of Animal Science 19:544−50

doi: 10.1080/1828051X.2020.1763212
[90]

Li P, Sun L, Wang J, Wang Y, Zou Y, et al. 2021. Effects of combined ultrasound and low-temperature short-time heating pretreatment on proteases inactivation and textural quality of meat of yellow-feathered chickens. Food Chemistry 355:129645

doi: 10.1016/j.foodchem.2021.129645
[91]

Başlar M, Kılıçlı M, Toker OS, Sağdıç O, Arici M. 2014. Ultrasonic vacuum drying technique as a novel process for shortening the drying period for beef and chicken meats. Innovative Food Science & Emerging Technologies 26:182−90

doi: 10.1016/j.ifset.2014.06.008
[92]

Morbiato G, Zambon A, Toffoletto M, Poloniato G, Dall'Acqua S, et al. 2019. Supercritical carbon dioxide combined with high power ultrasound as innovate drying process for chicken breast. The Journal of Supercritical Fluids 147:24−32

doi: 10.1016/j.supflu.2019.02.004
[93]

Aksoy A, Karasu S, Akcicek A, Kayacan S. 2019. Effects of different drying methods on drying kinetics, microstructure, color, and the rehydration ratio of minced meat. Foods 8:216

doi: 10.3390/foods8060216
[94]

Sánchez-Torres EA, Abril B, Benedito J, Bon J, Toldrà M, et al. 2022. Airborne ultrasonic application on hot air-drying of pork liver. Intensification of moisture transport and impact on protein solubility. Ultrasonics Sonochemistry 86:106011

doi: 10.1016/j.ultsonch.2022.106011
[95]

Ozuna C, Cárcel JA, Walde PM, Garcia-Perez JV. 2014. Low-temperature drying of salted cod (Gadus morhua) assisted by high power ultrasound: Kinetics and physical properties. Innovative Food Science & Emerging Technologies 23:146−55

doi: 10.1016/j.ifset.2014.03.008
[96]

Bantle M, Eikevik TM. 2014. A study of the energy efficiency of convective drying systems assisted by ultrasound in the production of clipfish. Journal of Cleaner Production 65:217−23

doi: 10.1016/j.jclepro.2013.07.016
[97]

Ojha KS, Kerry JP, Tiwari BK. 2017. Investigating the influence of ultrasound pre-treatment on drying kinetics and moisture migration measurement in Lactobacillus sakei cultured and uncultured beef jerky. LWT - Food Science and Technology 81:42−49

doi: 10.1016/j.lwt.2017.03.011
[98]

Horuz E, Jaafar HJ, Maskan M. 2017. Ultrasonication as pretreatment for drying of tomato slices in a hot air–microwave hybrid oven. Drying Technology 35:849−59

doi: 10.1080/07373937.2016.1222538
[99]

Rodríguez Ó, Santacatalina JV, Simal S, Garcia-Perez JV, Femenia A, et al. 2014. Influence of power ultrasound application on drying kinetics of apple and its antioxidant and microstructural properties. Journal of Food Engineering 129:21−29

doi: 10.1016/j.jfoodeng.2014.01.001
[100]

Musielak G, Mierzwa D, Kroehnke J. 2016. Food drying enhancement by ultrasound – a review. Trends in Food Science & Technology 56:126−41

doi: 10.1016/j.jpgs.2016.08.003
[101]

Tao Y, Zhang J, Jiang S, Xu Y, Show PL, et al. 2018. Contacting ultrasound enhanced hot-air convective drying of garlic slices: mass transfer modeling and quality evaluation. Journal of Food Engineering 235:79−88

doi: 10.1016/j.jfoodeng.2018.04.028
[102]

Schössler K, Jäger H, Knorr D. 2012. Effect of continuous and intermittent ultrasound on drying time and effective diffusivity during convective drying of apple and red bell pepper. Journal of Food Engineering 108:103−10

doi: 10.1016/j.jfoodeng.2011.07.018
[103]

Barsotti L, Cheftel JC. 1999. Food processing by pulsed electric fields. II. biological aspects. Food Reviews International 15:181−213

doi: 10.1080/87559129909541186
[104]

Weaver JC, Chizmadzhev YA. 1996. Theory of electroporation: a review. Bioelectrochemistry and Bioenergetics 41:135−60

doi: 10.1016/S0302-4598(96)05062-3
[105]

Barsotti L, Merle P, Cheftel JC. 1999. Food processing by pulsed electric fields. I. physical aspects. Food Reviews International 15:163−80

doi: 10.1080/87559129909541185
[106]

Donsì F, Ferrari G, Pataro G. 2010. Applications of pulsed electric field treatments for the enhancement of mass transfer from vegetable tissue. Food Engineering Reviews 2:109−30

doi: 10.1007/s12393-010-9015-3
[107]

Soliva-Fortuny R, Balasa A, Knorr D, Martín-Belloso O. 2009. Effects of pulsed electric fields on bioactive compounds in foods: a review. Trends in Food Science & Technology 20:544−56

doi: 10.1016/j.jpgs.2009.07.003
[108]

Yan Z, Yin L, Hao C, Liu K, Qiu J. 2021. Synergistic effect of pulsed electric fields and temperature on the inactivation of microorganisms. AMB Express 11:47

doi: 10.1186/s13568-021-01206-8
[109]

Tsapou EA, Ntourtoglou G, Drosou F, Tataridis P, Lalas S, et al. 2022. Pulsed electric field: a "green" extraction technology for biomolecular products from glycerol with fermentation of non-Saccharomyces yeasts. Frontiers in Bioengineering and Biotechnology 10:964174

doi: 10.3389/fbioe.2022.964174
[110]

Käferböck A, Smetana S, de Vos R, Schwarz C, Toepfl S, et al. 2020. Sustainable extraction of valuable components from Spirulina assisted by pulsed electric fields technology. Algal Research 48:101914

doi: 10.1016/j.algal.2020.101914
[111]

He G, Yan X, Wang X, Wang Y. 2019. Extraction and structural characterization of collagen from fishbone by high intensity pulsed electric fields. Journal of Food Process Engineering 42:e13214

doi: 10.1111/jfpe.13214
[112]

Hu R, Zhang M, Liu W, Mujumdar AS, Bai B. 2022. Novel synergistic freezing methods and technologies for enhanced food product quality: a critical review. Comprehensive Reviews in Food Science and Food Safety 21:1979−2001

doi: 10.1111/1541-4337.12919
[113]

Wu X, Zhang M, Adhikari B, Sun J. 2017. Recent developments in novel freezing and thawing technologies applied to foods. Critical Reviews in Food Science and Nutrition 57:3620−31

doi: 10.1080/10408398.2015.1132670
[114]

de Lourdes Meza-Jiménez M, Pokhrel PR, Robles de la Torre RR, Barbosa-Canovas GV, Hernández-Sánchez H. 2019. Effect of pulsed electric fields on the activity of food-grade papain in a continuous system. LWT 109:336−41

doi: 10.1016/j.lwt.2019.04.037
[115]

Arshad RN, Abdul-Malek Z, Munir A, Buntat Z, Ahmad MH, et al. 2020. Electrical systems for pulsed electric field applications in the food industry: an engineering perspective. Trends in Food Science & Technology 104:1−13

doi: 10.1016/j.jpgs.2020.07.008
[116]

Punthi F, Yudhistira B, Gavahian M, Chang CK, Cheng KC, et al. 2022. Pulsed electric field-assisted drying: a review of its underlying mechanisms, applications, and role in fresh produce plant-based food preservation. Comprehensive Reviews in Food Science and Food Safety 21:5109−30

doi: 10.1111/1541-4337.13052
[117]

Wang Q, Li Y, Sun DW, Zhu Z. 2018. Enhancing food processing by pulsed and high voltage electric fields: principles and applications. Critical Reviews in Food Science and Nutrition 58:2285−98

doi: 10.1080/10408398.2018.1434609
[118]

Han Z, Cai M, Cheng J, Sun D. 2018. Effects of electric fields and electromagnetic wave on food protein structure and functionality: a review. Trends in Food Science & Technology 75:1−9

doi: 10.1016/j.jpgs.2018.02.017
[119]

Luo W, Zhang R, Wang L, Chen J, Guan Z. 2010. Conformation changes of polyphenol oxidase and lipoxygenase induced by PEF treatment. Journal of Applied Electrochemistry 40:295−301

doi: 10.1007/s10800-009-9973-4
[120]

Huang W, Feng Z, Aila R, Hou Y, Carne A, et al. 2019. Effect of pulsed electric fields (PEF) on physico-chemical properties, β-carotene and antioxidant activity of air-dried apricots. Food Chemistry 291:253−62

doi: 10.1016/j.foodchem.2019.04.021
[121]

Bi X, Liu F, Rao L, Li J, Liu B, et al. 2013. Effects of electric field strength and pulse rise time on physicochemical and sensory properties of apple juice by pulsed electric field. Innovative Food Science & Emerging Technologies 17:85−92

doi: 10.1016/j.ifset.2012.10.008
[122]

Zhang C, Lyu X, Arshad RN, Aadil RM, Tong Y, et al. 2023. Pulsed electric field as a promising technology for solid foods processing: a review. Food Chemistry 403:134367

doi: 10.1016/j.foodchem.2022.134367
[123]

Wu Y, Zhang D. 2019. Pulsed electric field enhanced freeze-drying of apple tissue. Czech Journal of Food Sciences 37:432−38

doi: 10.17221/230/2018-CJFS
[124]

Bogusz R, Smetana S, Wiktor A, Parniakov O, Pobiega K, et al. 2022. The selected quality aspects of infrared-dried black soldier fly (Hermetia illucens) and yellow mealworm (Tenebrio molitor) larvae pre-treated by pulsed electric field. Innovative Food Science & Emerging Technologies 80:103085

doi: 10.1016/j.ifset.2022.103085
[125]

Wu Y, Guo Y, Zhang D. 2011. Study of the effect of high-pulsed electric field treatment on vacuum freeze-drying of apples. Drying Technology 29:1714−20

doi: 10.1080/07373937.2011.601825
[126]

Wiktor A, Witrowa-Rajchert D. 2020. Drying kinetics and quality of carrots subjected to microwave-assisted drying preceded by combined pulsed electric field and ultrasound treatment. Drying Technology 38:176−88

doi: 10.1080/07373937.2019.1642347
[127]

Alam R, Lyng JG, Frontuto D, Marra F, Cinquanta L. 2018. Effect of pulsed electric field pretreatment on drying kinetics, color, and texture of parsnip and carrot. Journal of Food Science 83:2159−66

doi: 10.1111/1750-3841.14216
[128]

Lammerskitten A, Shorstkii I, Parniakov O, Mykhailyk V, Toepfl S, et al. 2020. The effect of different methods of mango drying assisted by a pulsed electric field on chemical and physical properties. Journal of Food Processing and Preservation 44:e14973

doi: 10.1111/jfpp.14973
[129]

Won YC, Min SC, Lee DU. 2015. Accelerated drying and improved color properties of red pepper by pretreatment of pulsed electric fields. Drying Technology 33:926−32

doi: 10.1080/07373937.2014.999371
[130]

Bhat ZF, Morton JD, Mason SL, Bekhit AEDA. 2019. Current and future prospects for the use of pulsed electric field in the meat industry. Critical Reviews in Food Science and Nutrition 59:1660−74

doi: 10.1080/10408398.2018.1425825
[131]

Astráin-Redín L, Raso J, Cebrián G, Álvarez I. 2019. Potential of pulsed electric fields for the preparation of spanish dry-cured sausages. Scientific Reports 9:16042

doi: 10.1038/s41598-019-52464-3
[132]

Zhang Y, Wang R, Wen Q, Rahaman A, Zeng X. 2022. Effects of pulsed electric field pretreatment on mass transfer and quality of beef during marination process. Innovative Food Science & Emerging Technologies 80:103061

doi: 10.1016/j.ifset.2022.103061
[133]

Toepfl S, Knorr D. 2006. Pulsed electric fields as a pretreatment technique in drying processes. Stewart Postharvest Review 2:1−6

doi: 10.2212/spr.2006.4.3
[134]

Levkov K, Vitkin E, González CA, Golberg A. 2019. A laboratory IGBT-based high-voltage pulsed electric field generator for effective water diffusivity enhancement in chicken meat. Food Bioprocess Technol 12:1993−2003

doi: 10.1007/s11947-019-02360-5
[135]

Ghosh S, Gillis A, Levkov K, Vitkin E, Golberg A. 2020. Saving energy on meat air convection drying with pulsed electric field coupled to mechanical press water removal. Innovative Food Science & Emerging Technologies 66:102509

doi: 10.1016/j.ifset.2020.102509
[136]

Alahakoon AU, Faridnia F, Bremer PJ, Silcock P, Oey I. 2017. Pulsed electric fields effects on meat tissue quality and functionality. In Handbook of Electroporation, ed. Miklavčič D. LIII, 2998 pp. Cham: Springer. pp. 2455–75. https://doi.org/10.1007/978-3-319-32886-7_179

[137]

Wiktor A, Iwaniuk M, Śledź M, Nowacka M, Chudoba T, et al. 2013. Drying kinetics of apple tissue treated by pulsed electric field. Drying Technology 31:112−19

doi: 10.1080/07373937.2012.724128
[138]

Rastogi NK, Eshtiaghi MN, Knorr D. 1999. Accelerated mass transfer during osmotic dehydration of high intensity electrical field pulse pretreated carrots. Journal of Food Science 64:1020−23

doi: 10.1111/j.1365-2621.1999.tb12272.x
[139]

Arevalo P, Ngadi MO, Bazhal MI, Raghavan GSV. 2004. Impact of pulsed electric fields on the dehydration and physical properties of apple and potato slices. Drying Technology 22:1233−46

doi: 10.1081/DRT-120038589
[140]

Wiktor A, Nowacka M, Dadan M, Rybak K, Lojkowski W, et al. 2016. The effect of pulsed electric field on drying kinetics, color, and microstructure of carrot. Drying Technology 34:1286−96

doi: 10.1080/07373937.2015.1105813
[141]

Pataro G, Falcone M, Donsì G, Ferrari G. 2014. Metal release from stainless steel electrodes of a PEF treatment chamber: effects of electrical parameters and food composition. Innovative Food Science & Emerging Technologies 21:58−65

doi: 10.1016/j.ifset.2013.10.005
[142]

Kang T, Lee D, Ko Y, Jun S. 2022. Effects of pulsed electric field (PEF) and oscillating magnetic field (OMF) on supercooling preservation of beef at different fat levels. International Journal of Refrigeration 136:36−45

doi: 10.1016/j.ijrefrig.2022.01.004