[1]

Shahabfar A, Eitzinger J. 2013. Spatio-Temporal analysis of droughts in semi-arid regions by using meteorological drought indices. Atmosphere 4:94−112

doi: 10.3390/atmos4020094
[2]

Bhusal N, Lee M, Lee H, Adhikari A, Han AR, et al. 2021. Evaluation of morphological, physiological, and biochemical traits for assessing drought resistance in eleven tree species. Science of The Total Environment 779:146466

doi: 10.1016/j.scitotenv.2021.146466
[3]

Sardans J, Peñuelas J. 2004. Increasing drought decreases phosphorus availability in an evergreen Mediterranean forest. Plant and Soil 267:367−77

doi: 10.1007/s11104-005-0172-8
[4]

Sardans J, Peñuelas J, Ogaya R. 2008. Experimental drought reduced acid and alkaline phosphatase activity and increased organic extractable P in soil in a Quercus ilex Mediterranean forest. European Journal of Soil Biology 44:509−20

doi: 10.1016/j.ejsobi.2008.09.011
[5]

Zhang H, Shi L, Fu S. 2020. Effects of nitrogen deposition and increased precipitation on soil phosphorus dynamics in a temperate forest. Geoderma 380:114650

doi: 10.1016/j.geoderma.2020.114650
[6]

Zhang H, Shi L, Lu H, Shao Y, Liu S, et al. 2020. Drought promotes soil phosphorus transformation and reduces phosphorus bioavailability in a temperate forest. Science of The Total Environment 732:139295

doi: 10.1016/j.scitotenv.2020.139295
[7]

Tiessen H, Stewart JWB, Cole CV. 1984. Pathways of phosphorus transformations in soils of differing pedogenesis. Soil Science Society of America Journal 48:853−58

doi: 10.2136/sssaj1984.03615995004800040031x
[8]

Helfenstein J, Tamburini F, von Sperber C, Massey MS, Pistocchi C, et al. 2018. Combining spectroscopic and isotopic techniques gives a dynamic view of phosphorus cycling in soil. Nature Communications 9:3226

doi: 10.1038/s41467-018-05731-2
[9]

Xia Z, He Y, Zhu Z, Korpelainen H, Li C. 2022. Covariations and trade-offs of phosphorus (P) acquisition strategies in dioecious Populus euphratica as affected by soil water availability. Functional Ecology 36:3188−99

[10]

Chen X, Condron LM, Dunfield KE, Wakelin SA, Chen L. 2021. Impact of grassland afforestation with contrasting tree species on soil phosphorus fractions and alkaline phosphatase gene communities. Soil Biology and Biochemistry 159:108274

doi: 10.1016/j.soilbio.2021.108274
[11]

Nannipieri P, Giagnoni L, Landi L, Renella G. 2011. Role of phosphatase enzymes in soil. In Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling, eds Bünemann E, Oberson A, Frossard E. 26: XV, 483 pp. Heidelberg: Springer Berlin. pp. 215-43. https://doi.org/10.1007/978-3-642-15271-9_9

[12]

Sardans J, Penuelas J, Estiarte M. 2006. Warming and drought alter soil phosphatase activity and soil P availability in a Mediterranean shrubland. Plant and Soil 289:227−38

doi: 10.1007/s11104-006-9131-2
[13]

Schimel JP. 2018. Life in dry soils: effects of drought on soil microbial communities and processes. Annual Review of Ecology, Evolution, and Systematics 49:409−32

doi: 10.1146/annurev-ecolsys-110617-062614
[14]

Bünemann E, Smernik RJ, Marschner P, McNeill AM. 2008. Microbial synthesis of organic and condensed forms of phosphorus in acid and calcareous soils. Soil Biology and Biochemistry 40:932−46

doi: 10.1016/j.soilbio.2007.11.012
[15]

Tan H, Barret M, Mooij MJ, Rice O, Morrissey JP, et al. 2013. Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soils. Biology and Fertility of Soils 49:661−72

doi: 10.1007/s00374-012-0755-5
[16]

Fraser T, Lynch DH, Entz MH, Dunfield KE. 2015. Linking alkaline phosphatase activity with bacterial phoD gene abundance in soil from a long-term management trial. Geoderma 257–258:115−22

doi: 10.1016/j.geoderma.2014.10.016
[17]

Ragot SA, Huguenin-Elie O, Kertesz MA, Frossard E, Bünemann EK. 2016. Total and active microbial communities and phoD as affected by phosphate depletion and pH in soil. Plant and Soil 408:15−30

doi: 10.1007/s11104-016-2902-5
[18]

Luo G, Sun B, Li L, Li M, Liu M, et al. 2019. Understanding how long-term organic amendments increase soil phosphatase activities: insight into phoD-and phoC-harboring functional microbial populations. Soil Biology and Biochemistry 139:107632

doi: 10.1016/j.soilbio.2019.107632
[19]

Chen Y, Li W, Zhou H, Chen Y, Hao X, et al. 2017. Experimental study on water transport observations of desert riparian forests in the lower reaches of the Tarim River in China. International Journal of Biometeorology 61:1055−62

doi: 10.1007/s00484-016-1285-x
[20]

Niu Z, Li G, Hu H, Lv J, Zheng Q, et al. 2021. A gene that underwent adaptive evolution, LAC2 (LACCASE), in Populus euphratica improves drought tolerance by improving water transport capacity. Horticulture Research 8:88

doi: 10.1038/s41438-021-00518-x
[21]

Luo Y, Peng Q, Li K, Gong Y, Liu Y, et al. 2021. Patterns of nitrogen and phosphorus stoichiometry among leaf, stem and root of desert plants and responses to climate and soil factors in Xinjiang, China. CATENA 199:105100

doi: 10.1016/j.catena.2020.105100
[22]

Xia Z, He Y, Xu J, Zhu Z, Korpelainen H, et al. 2023. Rhizosphere microbe populations but not root traits induced by drought in Populus euphratica males. Soil Ecology Letters 5:220152

doi: 10.1007/s42832-022-0152-4
[23]

Yu L, Huang Z, Li Z, Korpelainen H, Li C. 2022. Sex-specific strategies of nutrient resorption associated with leaf economics in Populus euphratica. Journal of Ecology 110:2062−73

doi: 10.1111/1365-2745.13952
[24]

Li J, Yu B, Zhao C, Nowak RS, Zhao Z, et al. 2013. Physiological and morphological responses of Tamarix ramosissima and Populus euphratica to altered groundwater availability. Tree Physiology 33:57−68

doi: 10.1093/treephys/tps120
[25]

Bremner JM, Jenkinson DS. 1960. Determination of organic carbon in soil: I. oxidation by dichromate of organic matter in soil and plant materials. Journal of Soil Science 11:394−402

doi: 10.1111/j.1365-2389.1960.tb01093.x
[26]

Hedley MJ, Stewart JWB, Chauhan BSC. 1982. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal 46:970−76

doi: 10.2136/sssaj1982.03615995004600050017x
[27]

Tiessen H, Moir JO. 1993. Characterization of available P by sequential extraction. In Soil Sampling and Methods of Analysis, ed. Carter MR. Boca Raton: Lewis Publishers. pp. 75-86.

[28]

Murphy J, Riley JP. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27:31−36

doi: 10.1016/S0003-2670(00)88444-5
[29]

Maranguit D, Guillaume T, Kuzyakov Y. 2017. Land-use change affects phosphorus fractions in highly weathered tropical soils. CATENA 149:385−93

doi: 10.1016/j.catena.2016.10.010
[30]

Brookes PC, Powlson DS, Jenkinson DS. 1982. Measurement of microbial biomass phosphorus in soil. Soil Biology and Biochemistry 14:319−29

doi: 10.1016/0038-0717(82)90001-3
[31]

Tabatabai MA. 1994. Soil enzymes. In Methods of Soil Analysis: Part 2 Microbiological and Biochemical Properties, eds Weaver RW, Angle S, Bottomley P, Bezdicek D, Smith S, et al. 5: xxvii, 1121. USA: Soil Science Society of America, Inc. pp. 775−833. https://doi.org/10.2136/sssabookser5.2.c37

[32]

Frostegård Å, Tunlid A, Bååth E. 1991. Microbial biomass measured as total lipid phosphate in soils of different organic content. Journal of Microbiological Methods 14:151−63

doi: 10.1016/0167-7012(91)90018-L
[33]

Ruess L, Chamberlain PM. 2010. The fat that matters: soil food web analysis using fatty acids and their carbon stable isotope signature. Soil Biology and Biochemistry 42:1898−910

doi: 10.1016/j.soilbio.2010.07.020
[34]

Xia Z, He Y, Korpelainen H, Niinemets Ü, Li C. 2022. Sex-specific interactions shape root phenolics and rhizosphere microbial communities in Populus cathayana. Forest Ecology and Management 504:119857

doi: 10.1016/j.foreco.2021.119857
[35]

Vu DT, Tang C, Armstrong RD. 2008. Changes and availability of P fractions following 65 years of P application to a calcareous soil in a Mediterranean climate. Plant and Soil 304:21−33

doi: 10.1007/s11104-007-9516-x
[36]

Marcos MS, Bertiller MB, Olivera NL. 2019. Microbial community composition and network analyses in arid soils of the Patagonian Monte under grazing disturbance reveal an important response of the community to soil particle size. Applied Soil Ecology 138:223−32

doi: 10.1016/j.apsoil.2019.03.001
[37]

Codling EE, Chaney RL, Mulchi CL. 2000. Use of aluminum- and iron-rich residues to immobilize phosphorus in poultry litter and litter-amended soils. Journal of Environmental Quality 29:1924−31

doi: 10.2134/jeq2000.00472425002900060027x
[38]

Vincent AG, Turner BL, Tanner EVJ. 2010. Soil organic phosphorus dynamics following perturbation of litter cycling in a tropical moist forest. European Journal of Soil Science 61:48−57

doi: 10.1111/j.1365-2389.2009.01200.x
[39]

Marklein AR, Winbourne JB, Enders SK, Gonzalez DJX, van Huysen TL, et al. 2016. Mineralization ratios of nitrogen and phosphorus from decomposing litter in temperate versus tropical forests. Global Ecology and Biogeography 25:335−46

doi: 10.1111/geb.12414
[40]

Cross AF, Schlesinger WH. 2001. Biological and geochemical controls on phosphorus fractions in semiarid soils. Biogeochemistry 52:155−72

doi: 10.1023/A:1006437504494
[41]

Brandtberg PO, Davis MR, Clinton PW, Condron LM, Allen RB. 2010. Forms of soil phosphorus affected by stand development of mountain beech (Nothofagus) forests in New Zealand. Geoderma 157:228−34

doi: 10.1016/j.geoderma.2010.04.022
[42]

Harrell DL, Wang JJ. 2006. Fractionation and sorption of inorganic phosphorus in Louisiana calcareous soils. Soil Science 171:39−51

doi: 10.1097/01.ss.0000187347.37825.46
[43]

Khorshid MSH, Kruse J, Semella S, Vohland M, Wagner JF, et al. 2019. Phosphorus fractions and speciation in rural and urban calcareous soils in the semiarid region of Sulaimani city, Kurdistan, Iraq. Environmental Earth Sciences 78:531

doi: 10.1007/s12665-018-7995-0
[44]

Hou E, Lu X, Jiang L, Wen D, Luo Y. 2019. Quantifying soil phosphorus dynamics: a data assimilation approach. Journal of Geophysical Research: Biogeosciences 124:2159−73

doi: 10.1029/2018JG004903
[45]

Helfenstein J, Pistocchi C, Oberson A, Tamburini F, Goll DS, et al. 2020. Estimates of mean residence times of phosphorus in commonly considered inorganic soil phosphorus pools. Biogeosciences 17:441−54

doi: 10.5194/bg-17-441-2020
[46]

Neufeldt H, da Silva JE, Ayarza MA, Zech W. 2000. Land-use effects on phosphorus fractions in Cerrado oxisols. Biology and Fertility of Soils 31:30−37

doi: 10.1007/s003740050620
[47]

Rodrı́guez H, Fraga R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances 17:319−39

doi: 10.1016/S0734-9750(99)00014-2
[48]

Hui D, Mayes MA, Wang G. 2013. Kinetic parameters of phosphatase: a quantitative synthesis. Soil Biology and Biochemistry 65:105−13

doi: 10.1016/j.soilbio.2013.05.017
[49]

Sun D, Bi Q, Li K, Dai P, Yu Y, et al. 2018. Significance of temperature and water availability for soil phosphorus transformation and microbial community composition as affected by fertilizer sources. Biology and Fertility of Soils 54:229−41

doi: 10.1007/s00374-017-1252-7
[50]

Han B, Li J, Liu K, Zhang H, Wei X, et al. 2021. Variations in soil properties rather than functional gene abundances dominate soil phosphorus dynamics under short-term nitrogen input. Plant and Soil 469:227−41

doi: 10.1007/s11104-021-05143-0
[51]

Turner BL, Lambers H, Condron LM, Cramer MD, Leake JR, et al. 2013. Soil microbial biomass and the fate of phosphorus during long-term ecosystem development. Plant and Soil 367:225−34

doi: 10.1007/s11104-012-1493-z
[52]

Williams MA, Rice CW. 2007. Seven years of enhanced water availability influences the physiological, structural, and functional attributes of a soil microbial community. Applied Soil Ecology 35:535−45

doi: 10.1016/j.apsoil.2006.09.014
[53]

Strukelj M, Parker W, Corcket E, Augusto L, Khlifa R, et al. 2021. Tree species richness and water availability interact to affect soil microbial processes. Soil Biology and Biochemistry 155:108180

doi: 10.1016/j.soilbio.2021.108180
[54]

Pedrinho A, Mendes LW, do Rêgo Barros FM, Merloti LF, Martins MM, et al. 2023. Impacts of deforestation and forest regeneration on soil bacterial communities associated with phosphorus transformation processes in the Brazilian Amazon region. Ecological Indicators 146:109779

doi: 10.1016/j.ecolind.2022.109779
[55]

Oliverio AM, Bissett A, McGuire K, Saltonstall K, Turner BL, et al. 2020. The role of phosphorus limitation in shaping soil bacterial communities and their metabolic capabilities. mBio 11:e01718-20

doi: 10.1128/mbio.01718-20
[56]

Li Z, Wang J, Wu Y, Hu J, Cong L, et al. 2022. Changes in soil properties and the phoD-harboring bacteria of the alfalfa field in response to phosphite treatment. Frontiers in Microbiology 13:1013896

doi: 10.3389/fmicb.2022.1013896
[57]

Jorquera M, Martínez O, Maruyama F, Marschner P, de la Luz Mora M. 2008. Current and future biotechnological applications of bacterial phytases and phytase-producing bacteria. Microbes and Environments 23:182−91

doi: 10.1264/jsme2.23.182
[58]

Gaiero JR, Bent E, Boitt G, Condron LM, Dunfield KE. 2020. Effect of long-term plant biomass management on phosphatase-producing bacterial populations in soils under temperate grassland. Applied Soil Ecology 151:103583

doi: 10.1016/j.apsoil.2020.103583
[59]

Long X, Yao H, Huang Y, Wei W, Zhu Y. 2018. Phosphate levels influence the utilisation of rice rhizodeposition carbon and the phosphate-solubilising microbial community in a paddy soil. Soil Biology and Biochemistry 118:103−14

doi: 10.1016/j.soilbio.2017.12.014
[60]

Zeng Q, Mei T, Delgado-Baquerizo M, Wang M, Tan W. 2022. Suppressed phosphorus-mineralizing bacteria after three decades of fertilization. Agriculture, Ecosystems & Environment 323:107679

doi: 10.1016/j.agee.2021.107679
[61]

Hayat R, Ali S, Amara U, Khalid R, Ahmed I. 2010. Soil beneficial bacteria and their role in plant growth promotion: a review. Annals of Microbiology 60:579−598

doi: 10.1007/s13213-010-0117-1
[62]

Gai X, Li S, Zhang X, Bian F, Yang C, et al. 2021. Changes in soil phosphorus availability and associated microbial properties after chicken farming in Lei bamboo (Phyllostachys praecox) forest ecosystems. Land Degradation & Development 32:3008−22

doi: 10.1002/ldr.3963