[1]

Chauhan DK, Yadav V, Vaculík M, Gassmann W, Pike S, et al. 2021. Aluminum toxicity and aluminum stress-induced physiological tolerance responses in higher plants. Critical Reviews in Biotechnology 41:715−30

doi: 10.1080/07388551.2021.1874282
[2]

Kochian LV, Piñeros MA, Liu J, Magalhaes JV. 2015. Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Annual Review of Plant Biology 66:571−98

doi: 10.1146/annurev-arplant-043014-114822
[3]

Ding Z, Shi Y, Li G, Harberd N, Zheng S. 2021. Tease out the future: how tea research might enable crop breeding for acid soil tolerance. Plant Communications 2:100182

doi: 10.1016/j.xplc.2021.100182
[4]

Morita A, Yanagisawa O, Takatsu S, Maeda S, Hiradate S. 2008. Mechanism for the detoxification of aluminum in roots of tea plant (Camellia sinensis (L.) Kuntze). Phytochemistry 69:147−53

doi: 10.1016/j.phytochem.2007.06.007
[5]

Sun L, Zhang M, Liu X, Mao Q, Shi C, et al. 2020. Aluminum is essential for root growth and development of tea plants (Camellia sinensis). Journal of Integrative Plant Biology 62:984−97

doi: 10.1111/jipb.12942
[6]

Fung K, Carr HP, Zhang J, Wong M. 2008. Growth and nutrient uptake of tea under different aluminum concentrations. Journal of the Science of Food and Agriculture 88:1582−91

doi: 10.1002/jsfa.3254
[7]

Ghanati F, Morita A, Yokota H. 2005. Effects of aluminum on the growth of tea plant and activation of antioxidant system. Plant and Soil 276:133−41

doi: 10.1007/s11104-005-3697-y
[8]

Matsumoto H, Hirasawa E, Morimura S, Takahashi E. 1976. Localization of aluminum in tea leaves. Plant and Cell Physiology 17:627−31

doi: 10.1093/oxfordjournals.pcp.a075318
[9]

Li D, Shu Z, Ye X, Zhu J, Pan J, et al. 2017. Cell wall pectin methyl-esterification and organic acids of root tips involve in aluminum tolerance in Camellia sinensis. Plant Physiology and Biochemistry 119:265−74

doi: 10.1016/j.plaphy.2017.09.002
[10]

Morita A, Yanagisawa O, Maeda S, Takatsu S, Ikka T. 2011. Tea plant (Camellia sinensis L.) roots secrete oxalic acid and caffeine into medium containing aluminum. Soil Science and Plant Nutrition 57:796−802

doi: 10.1080/00380768.2011.629176
[11]

Gao H, Zhao Q, Zhang X, Wan X, Mao J. 2014. Localization of fluoride and aluminum in subcellular fractions of tea leaves and roots. Journal of Agricultural and Food Chemistry 62:2313−19

doi: 10.1021/jf4038437
[12]

Nagata T, Hayatsu M, Kosuge N. 1992. Identification of aluminium forms in tea leaves by 27Al NMR. Phytochemistry 31:1215−18

doi: 10.1016/0031-9422(92)80263-E
[13]

Sun J, Du N, Zhang Y. 2018. Effects of aluminum stress on protective enzyme activity in Tie Guanyin leaves. IOP Conference Series:Earth and Environmental Science 108:22020

doi: 10.1088/1755-1315/108/2/022020
[14]

Dey M, Singh RK. 2022. Neurotoxic effects of aluminium exposure as a potential risk factor for Alzheimer's Disease. Pharmacological Reports 74:439−50

doi: 10.1007/s43440-022-00353-4
[15]

Yan P, Han W, Li X, Zhang L, Zhang L. 2020. Present situation and analysis of soil acidification in Chinese tea garden. Scientia Agricultura Sinica 53:795−813

doi: 10.3864/j.issn.0578-1752.2020.04.011
[16]

Fan Z, Tang X, Zheng D, Yang Q, Chen G, et al. 2020. Study and prospect of soil acidification causes and improvement measures in tea plantation. Journal of Tea Science 40:15−25

doi: 10.13305/j.cnki.jts.20200117.006
[17]

von Uexküll HR, Mutert E. 1995. Global extent, development and economic impact of acid soils. Plant and Soil 171:1−15

doi: 10.1007/BF00009558
[18]

Dai Z, Zhang X, Tang C, Muhammad N, Wu J, et al. 2017. Potential role of biochars in decreasing soil acidification - a critical review. Science of The Total Environment 581–582:601−11

doi: 10.1016/j.scitotenv.2016.12.169
[19]

Tian D, Niu S. 2015. A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters 10:24019

doi: 10.1088/1748-9326/10/2/024019
[20]

Ma JF, Hiradate S. 2000. Form of aluminium for uptake and translocation in buckwheat (Fagopyrum esculentum Moench). Planta 211:355−60

doi: 10.1007/s004250000292
[21]

Ruan J, Wang G, Shi Y, Ma L. 2003. Aluminum in tea soils, rhizosphere soil and the characteristics of al uptake by tea plant. Journal of Tea Science16−20

doi: 10.3969/j.issn.1000-369X.2003.z1.003
[22]

Polak TB, Milačič R, Pihlar B, Mitrović B. 2001. The uptake and speciation of various Al species in the Brassica rapa pekinensis. Phytochemistry 57:189−98

doi: 10.1016/S0031-9422(01)00055-3
[23]

Sivasubramaniam S, Talibudeen O. 1971. Effect of aluminium on growth of tea (Camellia sinensis) and its uptake of potassium and phosphorus. Journal of the Science of Food and Agriculture 22:325−29

doi: 10.1002/jsfa.2740220702
[24]

Yamada H, Hattori T. 1980. Investigation of the relationship between aluminium and fluorine in plants, 3: absorption of fluoro-aluminium complexes by tea plants. Journal of the Science of Soil and Manure 51:179−82

[25]

Nagata T, Hayatsu M, Kosuge N. 1993. Aluminium kinetics in the tea plant using 27Al and 19F NMR. Phytochemistry 32:771−75

doi: 10.1016/0031-9422(93)85202-3
[26]

Wang Y, Li R, Li D, Jia X, Zhou D, et al. 2017. Nip1;2 is a plasma membrane-localized transporter mediating aluminum uptake, translocation, and tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 114:5047−52

doi: 10.1073/pnas.1618557114
[27]

Wang H, Chen R, Iwashita T, Shen R, Ma J. 2015. Physiological characterization of aluminum tolerance and accumulation in tartary and wild buckwheat. New Phytologist 205:273−79

doi: 10.1111/nph.13011
[28]

Klug B, Horst WJ. 2010. Spatial characteristics of aluminum uptake and translocation in roots of buckwheat (Fagopyrum esculentum). Physiologia Plantarum 139:181−91

doi: 10.1111/j.1399-3054.2010.01355.x
[29]

Morita A, Horie H, Fujii Y, Takatsu S, Watanabe N, et al. 2004. Chemical forms of aluminum in xylem sap of tea plants (Camellia sinensis L.). Phytochemistry 65:2775−80

doi: 10.1016/j.phytochem.2004.08.043
[30]

Xia J, Yamaji N, Kasai T, Ma J. 2010. Plasma membrane-localized transporter for aluminum in rice. Proceedings of the National Academy of Sciences of the United States of America 107:18381−85

doi: 10.1073/pnas.1004949107
[31]

Huang C, Yamaji N, Chen Z, Ma JF. 2012. A tonoplast-localized half-size ABC transporter is required for internal detoxification of aluminum in rice. The Plant Journal 69:857−67

doi: 10.1111/j.1365-313X.2011.04837.x
[32]

Negishi T, Oshima K, Hattori M, Kanai M, Mano S, et al. 2012. Tonoplast- and plasma membrane-localized aquaporin-family transporters in blue hydrangea sepals of aluminum hyperaccumulating plant. PLoS ONE 7:e43189

doi: 10.1371/journal.pone.0043189
[33]

Larsen PB, Geisler MJB, Jones CA, Williams KM, Cancel JD. 2005. ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. The Plant Journal 41:353−63

doi: 10.1111/j.1365-313X.2004.02306.x
[34]

Hao J, Peng A, Li Y, Zuo H, Li P, et al. 2022. Tea plant roots respond to aluminum-induced mineral nutrient imbalances by transcriptional regulation of multiple cation and anion transporters. BMC Plant Biology 22:203

doi: 10.1186/s12870-022-03570-4
[35]

Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, et al. 2004. A wheat gene encoding an aluminum-activated malate transporter. The Plant Journal 37:645−53

doi: 10.1111/j.1365-313X.2003.01991.x
[36]

Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, et al. 2004. Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proceedings of the National Academy of Sciences of the United States of America 101:15249−54

doi: 10.1073/pnas.0406258101
[37]

Zhang X, Long Y, Huang J, Xia J. 2019. Molecular mechanisms for coping with Al toxicity in plants. International Journal of Molecular Sciences 20:1551

doi: 10.3390/ijms20071551
[38]

Lv A, Wen W, Fan N, Su L, Zhou P, et al. 2021. Dehydrin MsDHN1 improves aluminum tolerance of alfalfa (Medicago sativa L.) by affecting oxalate exudation from root tips. The Plant Journal 108:441−58

doi: 10.1111/tpj.15451
[39]

Jansen S, Broadley MR, Robbrecht E, Smets E. 2002. Aluminum hyperaccumulation in angiosperms: a review of its phylogenetic significance. The Botanical Review 68:235−69

doi: 10.1663/0006-8101(2002)068[0235:AHIAAR]2.0.CO;2
[40]

van der Ent A, Kopittke PM, Paterson DJ, Casey LW, Nkrumah PN. 2020. Distribution of aluminium in hydrated leaves of tea (Camellia sinensis ) using synchrotron- and laboratory-based X-ray fluorescence microscopy. Metallomics 12:1062−69

doi: 10.1039/c9mt00300b
[41]

Fung K, Carr HP, Poon BHT, Wong M. 2009. A comparison of aluminum levels in tea products from Hong Kong markets and in varieties of tea plants from Hong Kong and India. Chemosphere 75:955−62

doi: 10.1016/j.chemosphere.2009.01.003
[42]

Fu Z, Jiang X, Li W, Shi Y, Lai S, et al. 2020. Proanthocyanidin–aluminum complexes improve aluminum resistance and detoxification of Camellia sinensis. Journal of Agricultural and Food Chemistry 68:7861−69

doi: 10.1021/acs.jafc.0c01689
[43]

Shen R, Ma J, Kyo M, Iwashita T. 2002. Compartmentation of aluminium in leaves of an Al-accumulator, Fagopyrum esculentum Moench. Planta 215:394−98

doi: 10.1007/s00425-002-0763-z
[44]

Safari M, Ghanati F, Safarnejad MR, Chashmi NA. 2018. The contribution of cell wall composition in the expansion of Camellia sinensis seedlings roots in response to aluminum. Planta 247:381−92

doi: 10.1007/s00425-017-2792-7
[45]

Li C, Xu H, Liu J, Zhang R, Ma X, et al. 2023. Aluminum subcellular distribution and its combining characteristics with cell wall in tea leaves. Acta Agricultuae Zhejiangensis 35:509−14

doi: 10.3969/j.issn.1004-1524.2023.03.03
[46]

Yang J, Li Y, Zhang Y, Zhang S, Wu Y, et al. 2008. Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex. Plant Physiology 146:323−24

doi: 10.1104/pp.107.111989
[47]

Huang D, Mao Y, Guo G, Ni D, Chen L. 2022. Genome-wide identification of PME gene family and expression of candidate genes associated with aluminum tolerance in tea plant (Camellia sinensis). BMC Plant Biology 22:306

doi: 10.1186/s12870-022-03686-7
[48]

Zheng S. 2020. Analysis of the content of mineral elements in tea germplasm resources. Thesis. Fujian Agriculture and Forestry University, pp. 36−40.

[49]

Guo J, Liu X, Zhang Y, Shen J, Han W, et al. 2010. Significant acidification in major Chinese croplands. Science 327:1008−10

doi: 10.1126/science.1182570
[50]

Ruan J, Ma L, Shi Y. 2006. Aluminium in tea plantations: mobility in soils and plants, and the influence of nitrogen fertilization. Environmental Geochemistry and Health 28:519−28

doi: 10.1007/s10653-006-9047-z
[51]

Owuor PO, Cheruiyot DKA. 1989. Effects of nitrogen fertilizers on the aluminum contents of mature tea leaf and extractable aluminum in the soil. Plant and Soil 119:342−45

doi: 10.1007/BF02370429
[52]

Zhao X, Shen R, Sun Q. 2009. Ammonium under solution culture alleviates aluminum toxicity in rice and reduces aluminum accumulation in roots compared with nitrate. Plant and Soil 315:107−21

doi: 10.1007/s11104-008-9736-8
[53]

Liu Y, Xu R. 2015. Effect of nitrogen forms on aluminum toxicity to soybean (Glycine max) and aluminum speciation on root surface. Journal of Ecology and Rural Environment 31:223−29

doi: 10.11934/j.issn.1673-4831.2015.02.013
[54]

Zhao X, Shen R. 2018. Aluminum–nitrogen interactions in the soil–plant system. Frontiers in Plant Science 9:807

doi: 10.3389/fpls.2018.00807
[55]

Duan X, Hu X, Deng Z, Chen F. 2012. The effect of calcium addition on uptake and accumulation of calcium, aluminum and partial mineral of tea plants under aluminum stress. Journal of Jiangxi Normal University (Natural Science) 36:321−25

doi: 10.16357/j.cnki.issn1000-5862.2012.03.011
[56]

Fung K, Wong M. 2004. Application of different forms of calcium to tea soil to prevent aluminium and fluorine accumulation. Journal of the Science of Food and Agriculture 84:1469−77

doi: 10.1002/jsfa.1842
[57]

Zhou B, Mei H, Li J, Li C, Zhong Q, et al. 2022. Root growth and organic acid secretion of tea plants affected by phosphorus and aluminum interaction. Journal of Tea Science 42:819−27

doi: 10.13305/j.cnki.jts.2022.06.006
[58]

Peng C, Xu X, Ren Y, Niu H, Yang Y, et al. 2021. Fluoride absorption, transportation and tolerance mechanism in Camellia sinensis, and its bioavailability and health risk assessment: a systematic review. Journal of The Science of Food and Agricultural 101:379−87

doi: 10.1002/jsfa.10640
[59]

Fu S. 2009. Effect of aluminum and fluoride interaction on aluminum accumulation and transportation in tea plant. Thesis. Zhejiang Normal University, pp. 55.

[60]

Peng C, Xu X, Zhu H, Ren Y, Niu H, et al. 2021. Metabolics and ionomics responses of tea leaves (Camellia sinensis (L.) O. Kuntze) to fluoride stress. Plant Physiology and Biochemistry 158:65−75

doi: 10.1016/j.plaphy.2020.11.024
[61]

Ruan J, Ma L, Shi Y, Han W. 2003. Uptake of fluoride by tea plant (Camellia sinensis L) and the impact of aluminum. Journal of the Science of Food and Agriculture 83:1342−48

doi: 10.1002/jsfa.1546
[62]

Peng C, Zhu X, Hou R, Ge G, Hua R, et al. 2018. Aluminum and heavy metal accumulation in tea leaves: an interplay of environmental and plant factors and an assessment of exposure risks to consumers. Journal of Food Science 83:1165−72

doi: 10.1111/1750-3841.14093
[63]

de Silva J, Tuwei G, Zhao F. 2016. Environmental factors influencing aluminium accumulation in tea (Camellia sinensis L.). Plant and Soil 400:223−30

doi: 10.1007/s11104-015-2729-5
[64]

Li Y, Huang J, Song X, Zhang Z, Jiang Y, et al. 2017. An RNA-Seq transcriptome analysis revealing novel insights into aluminum tolerance and accumulation in tea plant. Planta 246:91−103

doi: 10.1007/s00425-017-2688-6
[65]

Iuchi S, Koyama H, Iuchi A, Kobayashi Y, Kitabayashi S, et al. 2007. Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proceedings of the National Academy of Sciences of the United States of America 104:9900−05

doi: 10.1073/pnas.0700117104
[66]

Yamaji N, Huang C, Nagao S, Yano M, Sato Y, et al. 2009. A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. The Plant Cell 21:3339−49

doi: 10.1105/tpc.109.070771
[67]

Zhao H, Huang W, Zhang Y, Zhang Z, Li Y, et al. 2018. Natural variation of CsSTOP1 in tea plant (Camellia sinensis) related to aluminum tolerance. Plant and Soil 431:71−87

doi: 10.1007/s11104-018-3746-y
[68]

Huang D, Gong Z, Chen X, Wang H, Tan R, et al. 2021. Transcriptomic responses to aluminum stress in tea plant leaves. Scientific Reports 11:5800

doi: 10.1038/s41598-021-85393-1
[69]

Yan Y, Zhu X, Yu Y, Li C, Zhang Z, et al. 2022. Nanotechnology strategies for plant genetic engineering. Advanced Materials 34:2106945

doi: 10.1002/adma.202106945
[70]

Liu S, Zhao L, Liao Y, Luo Z, Wang H, et al. 2020. Dysfunction of the 4-coumarate: coenzyme A ligase 4CL4 impacts aluminum resistance and lignin accumulation in rice. The Plant Journal 104:1233−50

doi: 10.1111/tpj.14995
[71]

Su L, Lv A, Wen W, Fan N, Li J, et al. 2022. MsMYB741 is involved in alfalfa resistance to aluminum stress by regulating flavonoid biosynthesis. The Plant Journal 112:756−71

doi: 10.1111/tpj.15977
[72]

Cheng L, Liu H, Zhao J, Dong Y, Xu Q, et al. 2021. Hormone orchestrates a hierarchical transcriptional cascade that regulates Al-induced de novo root regeneration in tea nodal cutting. Journal of Agricultural and Food Chemistry 69:5858−70

doi: 10.1021/acs.jafc.1c01100
[73]

Fan K, Wang M, Gao Y, Ning Q, Shi Y. 2019. Transcriptomic and ionomic analysis provides new insight into the beneficial effect of Al on tea roots' growth and nutrient uptake. Plant Cell Reports 38:715−29

doi: 10.1007/s00299-019-02401-5
[74]

Huang D, Tan R, Chen X, Wang H, Gong Z, et al. 2019. Transcriptome analysis of root induced by aluminum in tea plants (Camellia sinensis). Journal of Tea Science 39:506−20

doi: 10.13305/j.cnki.jts.2019.05.002
[75]

Pandey A, Mann M. 2000. Proteomics to study genes and genomes. Nature 405:837−46

doi: 10.1038/35015709
[76]

Zheng L, Lan P, Shen R, Li W. 2014. Proteomics of aluminum tolerance in plants. Protemics 14:566−78

doi: 10.1002/pmic.201300252
[77]

Xu Q, Wang Y, Ding Z, Fan K, Ma D, et al. 2017. Aluminum induced physiological and proteomic responses in tea (Camellia sinensis) roots and leaves. Plant Physiology and Biochemistry 115:141−51

doi: 10.1016/j.plaphy.2017.03.017
[78]

Hamel RD, Appanna VD. 2001. Modulation of TCA cycle enzymes and aluminum stress in Pseudomonas fluorescens. Journal of Inorganic Biochemistry 87:1−8

doi: 10.1016/S0162-0134(01)00307-5
[79]

Nunes-Nesi A, Brito DS, Inostroza-Blancheteau C, Fernie AR, Araújo WL. 2014. The complex role of mitochondrial metabolism in plant aluminum resistance. Trends in Plant Science 19:399−407

doi: 10.1016/j.tplants.2013.12.006
[80]

Anoop VM, Basu U, McCammon MT, McAlister-Henn L, Taylor GJ. 2003. Modulation of citrate metabolism alters aluminum tolerance in yeast and transgenic canola overexpressing a mitochondrial citrate synthase. Plant Physiology 132:2205−17

doi: 10.1104/pp.103.023903
[81]

Chen Y, Tsao TM, Liu CC, Lin K, Wang M. 2011. Aluminium and nutrients induce changes in the profiles of phenolic substances in tea plants (Camellia sinensis CV TTES, No. 12 (TTE)). Journal of the Science of Food and Agriculture 91:1111−17

doi: 10.1002/jsfa.4291
[82]

Peng A, Yu K, Yu S, Li Y, Zuo H, et al. 2023. Aluminum and fluoride stresses altered organic acid and secondary metabolism in tea (Camellia sinensis) plants: influences on plant tolerance, tea quality and safety. International Journal of Molecular Sciences 24:4640

doi: 10.3390/ijms24054640
[83]

Fu Z, Jiang X, Kong D, Chen Y, Zhuang J, et al. 2022. Flavonol-aluminum complex formation: enhancing aluminum accumulation in tea plants. Journal of Agricultural and Food Chemistry 70:14096−108

doi: 10.1021/acs.jafc.2c04963
[84]

Singh S, Parihar P, Singh R, Singh VP, Prasad SM. 2015. Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Frontiers in Plant Science 6:1143

doi: 10.3389/fpls.2015.01143
[85]

Hajiboland R, Bahrami Rad S, Barceló J, Poschenrieder C. 2013. Mechanisms of aluminum-induced growth stimulation in tea (Camellia sinensis). Journal of Plant Nutrition and Soil Science 176:616−25

doi: 10.1002/jpln.201200311
[86]

Xu Q, Wang Y, Ding Z, Song L, Li Y, et al. 2016. Aluminum induced metabolic responses in two tea cultivars. Plant Physiology and Biochemistry 101:162−72

doi: 10.1016/j.plaphy.2016.02.001
[87]

Mukhopadyay M, Bantawa P, Das A, Sarkar B, Bera B, et al. 2012. Changes of growth, photosynthesis and alteration of leaf antioxidative defence system of tea [Camellia sinensis (L.) O. Kuntze] seedlings under aluminum stress. BioMetals 25:1141−54

doi: 10.1007/s10534-012-9576-0
[88]

Hajiboland R, Bahrami-Rad S, Bastani S. 2014. Aluminum alleviates boron-deficiency induced growth impairment in tea plants. Biologia Plantarum 58:717−24

doi: 10.1007/s10535-014-0425-6
[89]

Hajiboland R, Barceló J, Poschenrieder C, Tolrà R. 2013. Amelioration of iron toxicity: a mechanism for aluminum-induced growth stimulation in tea plants. Journal of Inorganic Biochemistry 128:183−87

doi: 10.1016/j.jinorgbio.2013.07.007
[90]

Tolrà R, Martos S, Hajiboland R, Poschenrieder C. 2020. Aluminium alters mineral composition and polyphenol metabolism in leaves of tea plants (Camellia sinensis). Journal of Inorganic Biochemistry 204:110956

doi: 10.1016/j.jinorgbio.2019.110956
[91]

Zerrouk IZ, Rahmoune B, Auer S, Rößler S, Lin T, et al. 2020. Growth and aluminum tolerance of maize roots mediated by auxin- and cytokinin-producing Bacillus toyonensis requires polar auxin transport. Environmental and Experimental Botany 176:104064

doi: 10.1016/j.envexpbot.2020.104064
[92]

Farh MEA, Kim YJ, Sukweenadhi J, Singh P, Yang DC. 2017. Aluminium resistant, plant growth promoting bacteria induce overexpression of Aluminium stress related genes in Arabidopsis thaliana and increase the ginseng tolerance against Aluminium stress. Microbiological Research 200:45−52

doi: 10.1016/j.micres.2017.04.004
[93]

Li Y, Li Z, Arafat Y, Lin W. 2020. Studies on fungal communities and functional guilds shift in tea continuous cropping soils by high-throughput sequencing. Annals of Microbiology 70:7

doi: 10.1186/s13213-020-01555-y
[94]

Ge D, Yao H, Huang C. 2007. Isolation and characterization of acid- and Al- tolerant microorganisms. Journal of Zhejiang University Agricultural and Life Science626−32

doi: 10.3321/j.issn:1008-9209.2007.06.008
[95]

Kawai F, Zhang DM, Sugimoto M. 2000. Isolation and characterization of acid- and Al-tolerant microorganisms. FEMS Microbiology Letters 189:143−47

doi: 10.1111/j.1574-6968.2000.tb09220.x
[96]

Konishi S, Souta I, Takahashi J, Ohmoto M, Kaneko S. 1994. Isolation and characteristics of acid- and aluminum-tolerant bacterium. Bioscience, Biotechnology, and Biochemistry 58:1960−63

doi: 10.1271/bbb.58.1960
[97]

Luo Y, Su Y, Zhang Y, Xia X, Song L, et al. 2016. Research on the promoting effects on tea growth and aluminum tolerant mechanism of Bacillus subtilis strain QM7. Journal of Tea Science 36:567−74

doi: 10.13305/j.cnki.jts.2016.06.003
[98]

Zhao X, Song P, Feng L, Hong W, Wu C, et al. 2014. Isolation and identification of a growth-promoting and aluminum-resistant endophytic bacterium from tea tree. Acta Agriculture Universitatis Jiangxiensis 36:407−12

doi: 10.13836/j.jjau.2014066
[99]

Zhang S, Wu P, Ding Y, Wu H, Geng Y, et al. 2021. Screening and identification of aluminum-tolerant endophytic fungi in tea plant roots. Journal of Anhui Agricultural University 48:744−49

doi: 10.13610/j.cnki.1672-352x.20211022.005
[100]

Jiang X, Li W, Han M, Chen G, Wu J, et al. 2022. Aluminum-tolerant, growth-promoting endophytic bacteria as contributors in promoting tea plant growth and alleviating aluminum stress. Tree Physiology 42:1043−58

doi: 10.1093/treephys/tpab159
[101]

Ma H, Liu N, Sun X, Zhu M, Mao T, et al. 2023. Establishment of an efficient transformation system and its application in regulatory mechanism analysis of biological macromolecules in tea plants. International Journal of Biological Macromolecules 244:125372

doi: 10.1016/j.ijbiomac.2023.125372
[102]

Lei GJ, Yokosho K, Yamaji N, Fujii-Kashino M, Ma JF. 2017. Functional characterization of two half-size ABC transporter genes in aluminium-accumulating buckwheat. New Phytologist 215:1080−89

doi: 10.1111/nph.14648
[103]

Wei C, Yang H, Wang S, Zhao J, Liu C, et al. 2018. Draft genome sequence of Camellia sinensis var. Sinensis provides insights into the evolution of the tea genome and tea quality. Proceedings of the National Academy of Sciences of the United States of America 115:E4151−E4158

doi: 10.1073/pnas.1719622115
[104]

Wang P, Yu J, Jin S, Chen S, Yue C, et al. 2021. Genetic basis of high aroma and stress tolerance in the oolong tea cultivar genome. Horticulture Research 8:107

doi: 10.1038/s41438-021-00542-x
[105]

Zhang W, Zhang Y, Qiu H, Guo Y, Wan H, et al. 2020. Genome assembly of wild tea tree DASZ reveals pedigree and selection history of tea varieties. Nature Communications 11:3719

doi: 10.1038/s41467-020-17498-6
[106]

Zhang X, Chen S, Shi L, Gong D, Zhang S, et al. 2021. Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis. Nature Genetics 53:1250−59

doi: 10.1038/s41588-021-00895-y
[107]

Xia E, Tong W, Hou Y, An Y, Chen L, et al. 2020. The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation. Molecular Plant 13:1013−26

doi: 10.1016/j.molp.2020.04.010
[108]

Xia E, Zhang H, Sheng J, Li K, Zhang Q, et al. 2017. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Molecular Plant 10:866−77

doi: 10.1016/j.molp.2017.04.002
[109]

Li J, Duan Y, Han Z, Shang X, Zhang K, et al. 2021. Genome-wide identification and expression analysis of the NRAMP family genes in tea plant (Camellia sinensis). Plants 10:1055

doi: 10.3390/plants10061055
[110]

Xu X, Tian Z, Xing A, Wu Z, Li X, et al. 2022. Nitric oxide participates in aluminum-stress-induced pollen tube growth inhibition in tea (Camellia sinensis) by regulating CsALMTs. Plants 11:2233

doi: 10.3390/plants11172233
[111]

Maron LG, Piñeros MA, Guimarães CT, Magalhaes JV, Pleiman JK, et al. 2010. Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize. The Plant Journal 61:728−40

doi: 10.1111/j.1365-313X.2009.04103.x
[112]

Famoso AN, Zhao K, Clark RT, Tung C, Wright MH, et al. 2011. Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping. PLoS Genetics 7:e1002221

doi: 10.1371/journal.pgen.1002221
[113]

Yang M, Lu K, Zhao F, Xie W, Ramakrishna P, et al. 2018. Genome-wide association studies reveal the genetic basis of ionomic variation in rice. The Plant Cell 30:2720−40

doi: 10.1105/tpc.18.00375
[114]

Mo Y, Jiao Y. 2022. Advances and applications of single-cell omics technologies in plant research. The Plant Journal 110:1551−63

doi: 10.1111/tpj.15772