[1] |
Yuan Z, Persson S, Zhang D. 2020. Molecular and genetic pathways for optimizing spikelet development and grain yield. aBIOTECH 1:276−92 doi: 10.1007/s42994-020-00026-x |
[2] |
Zhang D, Yuan Z. 2014. Molecular control of grass inflorescence development. Annual Review of Plant Biology 65:553−78 doi: 10.1146/annurev-arplant-050213-040104 |
[3] |
Zhang D, Yuan Z, An G, Dreni L, Hu J, Kater MM. 2013. Panicle development. In Genetics and Genomics of Rice. Plant Genetics and Genomics: Crops and Models, eds. Zhang Q, Wing RA. vol 5. New York: Springer. pp. 279−95. https://doi.org/10.1007/978-1-4614-7903-1_19 |
[4] |
Theissen G. 2001. Development of floral organ identity: stories from the MADS house. Current Opinion in Plant Biology 4:75−85 doi: 10.1016/S1369-5266(00)00139-4 |
[5] |
Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, et al. 2003. Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424:85−88 doi: 10.1038/nature01741 |
[6] |
Gramzow L, Theissen G. 2010. A hitchhiker’s guide to the MADS world of plants. Genome Biology 11:214 doi: 10.1186/gb-2010-11-6-214 |
[7] |
Chen L, Chu H, Yuan Z, Pan A, Liang W, et al. 2006. Isolation and genetic analysis for rice mutants treated with 60 Co γ-Ray. Journal of Xiamen University (Natural Science) 45(z1):82−85 doi: 10.3321/j.issn:0438-0479.2006.z1.021 |
[8] |
Chu H, Qian Q, Liang W, Yin C, Tan H, et al. 2006. The FLORAL ORGAN NUMBER4 gene encoding a putative ortholog of Arabidopsis CLAVATA3 regulates apical meristem size in rice. Plant Physiology 142:1039−52 doi: 10.1104/pp.106.086736 |
[9] |
Chu H, Liang W, Li J, Hong F, Wu Y, et al. 2013. A CLE-WOX signalling module regulates root meristem maintenance and vascular tissue development in rice. Journal of Experimental Botany 64:5359−69 doi: 10.1093/jxb/ert301 |
[10] |
Xu W, Tao J, Chen M, Dreni L, Luo Z, et al. 2017. Interactions between FLORAL ORGAN NUMBER4 and floral homeotic genes in regulating rice flower development. Journal of Experimental Botany 68:483−98 doi: 10.1093/jxb/erw459 |
[11] |
Ren D, Xu Q, Qiu Z, Cui Y, Zhou T, et al. 2019. FON4 prevents the multi-floret spikelet in rice. Plant Biotechnology Journal 17:1007−9 doi: 10.1111/pbi.13083 |
[12] |
Li H, Liang W, Yin C, Zhu L, Zhang D. 2011. Genetic interaction of OsMADS3, DROOPING LEAF, and OsMADS13 in specifying rice floral organ identities and meristem determinacy. Plant Physiology 156:263−74 doi: 10.1104/pp.111.172080 |
[13] |
Li H, Liang W, Hu Y, Zhu L, Yin C, et al. 2011. Rice MADS6 interacts with the floral homeotic genes SUPERWOMAN1, MADS3, MADS58, MADS13, and DROOPING LEAF in specifying floral organ identities and meristem fate. The Plant Cell 23:2536−52 doi: 10.1105/tpc.111.087262 |
[14] |
Li H, Liang W, Jia R, Yin C, Zong J, et al. 2010. The AGL6-like gene OsMADS6 regulates floral organ and meristem identities in rice. Cell Research 20:299−313 doi: 10.1038/cr.2009.143 |
[15] |
Li G, Kuijer HNJ, Yang X, Liu H, Shen C, et al. 2021. MADS1 maintains barley spike morphology at high ambient temperatures. Nature Plants 7:1093−107 doi: 10.1038/s41477-021-00957-3 |
[16] |
Meng Q, Li X, Zhu W, Yang L, Liang W, et al. 2017. Regulatory network and genetic interactions established by OsMADS34 in rice inflorescence and spikelet morphogenesis. Journal of Integrative Plant Biology 59:693−707 doi: 10.1111/jipb.12594 |
[17] |
Gao X, Liang W, Yin C, Ji S, Wang H, et al. 2010. The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development. Plant Physiology 153:728−40 doi: 10.1104/pp.110.156711 |
[18] |
Wu D, Liang W, Zhu W, Chen M, Ferrándiz C, et al. 2018. Loss of LOFSEP transcription factor function converts spikelet to leaf-like structures in rice. Plant Physiology 176:1646−64 doi: 10.1104/pp.17.00704 |
[19] |
Zhu W, Yang L, Wu D, Meng Q, Deng X, et al. 2022. Rice SEPALLATA genes OsMADS5 and OsMADS34 cooperate to limit inflorescence branching by repressing the TERMINAL FLOWER1-like gene RCN4. New Phytologist 233:1682−700 doi: 10.1111/nph.17855 |
[20] |
Cai Q, Yuan Z, Chen M, Yin C, Luo Z, et al. 2014. Jasmonic acid regulates spikelet development in rice. Nature Communications 5:3476 doi: 10.1038/ncomms4476 |
[21] |
You X, Zhu S, Zhang W, Zhang J, Wang C, et al. 2019. OsPEX5 regulates rice spikelet development through modulating jasmonic acid biosynthesis. New Phytologist 224:712−24 doi: 10.1111/nph.16037 |
[22] |
Wang X, Chen Y, Liu S, Fu W, Zhuang Y, et al. 2023. Functional dissection of rice jasmonate receptors involved in development and defense. New Phytologist 238:2144−58 doi: 10.1111/nph.18860 |
[23] |
Hu Y, Liang W, Yin C, Yang X, Ping B, et al. 2015. Interactions of OsMADS1 with Floral Homeotic Genes in Rice Flower Development. Molecular Plant 8:1366−84 doi: 10.1016/j.molp.2015.04.009 |
[24] |
Yun D, Liang W, Dreni L, Yin C, Zhou Z, et al. 2013. OsMADS16 genetically interacts with OsMADS3 and OsMADS58 in specifying floral patterning in rice. Molecular Plant 6:743−56 doi: 10.1093/mp/sst003 |
[25] |
Yoshida A, Suzaki T, Tanaka W, Hirano HY. 2009. The homeotic gene long sterile lemma (G1) specifies sterile lemma identity in the rice spikelet. PNAS 106:20103−8 doi: 10.1073/pnas.0907896106 |
[26] |
Hong L, Qian Q, Zhu K, Tang D, Huang Z, et al. 2010. ELE restrains empty glumes from developing into lemmas. Journal of Genetics and Genomics 37:101−15 doi: 10.1016/S1673-8527(09)60029-1 |
[27] |
Zhang T, Li Y, Ma L, Sang X, Ling Y, et al. 2017. LATERAL FLORET 1 induced the three-florets spikelet in rice. PNAS 114:9984−89 doi: 10.1073/pnas.1700504114 |
[28] |
Zong J, Wang L, Zhu L, Bian L, Zhang B, et al. 2022. A rice single cell transcriptomic atlas defines the developmental trajectories of rice floret and inflorescence meristems. New Phytologist 234:494−512 doi: 10.1111/nph.18008 |
[29] |
Wang K, Tang D, Hong L, Xu W, Huang J, et al. 2010. DEP and AFO regulate reproductive habit in rice. PLoS Genetics 6:e1000818 doi: 10.1371/journal.pgen.1000818 |
[30] |
Jin Y, Luo Q, Tong H, Wang A, Cheng Z, et al. 2011. An AT-hook gene is required for palea formation and floral organ number control in rice. Developmental Biology 359:277−88 doi: 10.1016/j.ydbio.2011.08.023 |
[31] |
Yuan Z, Gao S, Xue DW, Luo D, Li LT, et al. 2009. RETARDED PALEA1 controls palea development and floral zygomorphy in rice. Plant Physiology 149:235−44 doi: 10.1104/pp.108.128231 |
[32] |
Sang X, Li Y, Luo Z, Ren D, Fang L, et al. 2012. CHIMERIC FLORAL ORGANS1, encoding a monocot-specific MADS box protein, regulates floral organ identity in rice. Plant Physiology 160:788−807 doi: 10.1104/pp.112.200980 |
[33] |
Hu Y, Wang L, Jia R, Liang W, Zhang X, et al. 2021. Rice transcription factor MADS32 regulates floral patterning through interactions with multiple floral homeotic genes. Journal of Experimental Botany 72:2434−49 doi: 10.1093/jxb/eraa588 |
[34] |
Tao J, Liang W, An G, Zhang D. 2018. OsMADS6 controls flower development by activating rice FACTOR OF DNA METHYLATION LIKE1. Plant Physiology 177:713−27 doi: 10.1104/pp.18.00017 |
[35] |
Ariizumi T, Toriyama K. 2011. Genetic regulation of sporopollenin synthesis and pollen exine development. Annual Review of Plant Biology 62:437 doi: 10.1146/annurev-arplant-042809-112312 |
[36] |
Strand J, Knight C, Robson J, Talle B, Wilson ZA. 2021. Evolution and diversity of the angiosperm anther: trends in function and development. Plant Reproduction 34:307−19 doi: 10.1007/s00497-021-00416-1 |
[37] |
Gómez JF, Talle B, Wilson ZA. 2015. Anther and pollen development: A conserved developmental pathway. Journal of Integrative Plant Biology 57:876−91 doi: 10.1111/jipb.12425 |
[38] |
Shi J, Cui M, Yang L, Kim YJ, Zhang D. 2015. Genetic and biochemical mechanisms of pollen wall development. Trends in Plant Science 20:741−53 doi: 10.1016/j.tplants.2015.07.010 |
[39] |
Zhang DB, Wilson ZA. 2009. Stamen specification and anther development in rice. Chinese Science Bulletin 54:2342−53 doi: 10.1007/s11434-009-0348-3 |
[40] |
Wilson ZA, Zhang DB. 2009. From Arabidopsis to rice: pathways in pollen development. Journal of Experimental Botany 60:1479−92 doi: 10.1093/jxb/erp095 |
[41] |
Tan H, Liang W, Hu J, Zhang D. 2012. MTR1 encodes a secretory fasciclin glycoprotein required for male reproductive development in rice. Developmental Cell 22:1127−37 doi: 10.1016/j.devcel.2012.04.011 |
[42] |
Yang L, Qian X, Chen M, Fei Q, Meyers BC, et al. 2016. Regulatory role of a receptor-Like kinase in specifying anther cell identity. Plant Physiology 171:2085−100 doi: 10.1104/pp.16.00016 |
[43] |
Yang X, Li G, Tian Y, Song Y, Liang W, et al. 2018. A rice glutamyl-tRNA synthetase modulates early anther cell division and patterning. Plant Physiology 177:728−44 doi: 10.1104/pp.18.00110 |
[44] |
Fu Z, Yu J, Cheng X, Zong X, Xu J, et al. 2014. The rice basic helix-loop-helix transcription factor TDR INTERACTING PROTEIN2 is a central switch in early anther development. The Plant Cell 26:1512−24 doi: 10.1105/tpc.114.123745 |
[45] |
Zhang D, Yang L. 2014. Specification of tapetum and microsporocyte cells within the anther. Current Opinion in Plant Biology 17:49−55 doi: 10.1016/j.pbi.2013.11.001 |
[46] |
Li N, Zhang D, Liu H, Yin C, Li X, et al. 2006. The rice Tapetum Degeneration Retardation gene is required for tapetum degradation and anther development. The Plant Cell 18:2999−3014 doi: 10.1105/tpc.106.044107 |
[47] |
Zhang D, Liang W, Yuan Z, Li N, Shi J, et al. 2008. Tapetum degeneration retardation is critical for aliphatic metabolism and gene regulation during rice pollen development. Molecular Plant 1:599−610 doi: 10.1093/mp/ssn028 |
[48] |
Niu N, Liang W, Yang X, Jin W, Wilson Z, et al. 2013. EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nature Communications 4:11 doi: 10.1038/ncomms2396 |
[49] |
Hu L, Liang W, Yin C, Cui X, Zong J, et al. 2011. Rice MADS3 regulates ROS homeostasis during late anther development. The Plant Cell 23:515−33 doi: 10.1105/tpc.110.074369 |
[50] |
Qu G, Quan S, Mondol P, Xu J, Zhang D, et al. 2014. Comparative metabolomic analysis of wild type and mads3 mutant rice anthers. Journal of Integrative Plant Biology 56:849−63 doi: 10.1111/jipb.12245 |
[51] |
Li H, Yuan Z, Vizcay-Barrena G, Yang C, Liang W, et al. 2011. PERSISTENT TAPETAL CELL1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in Rice. Plant Physiology 156:615−30 doi: 10.1104/pp.111.175760 |
[52] |
Uzair M, Xu D, Schreiber L, Shi J, Liang W, et al. 2020. PERSISTENT TAPETAL CELL2 is required for normal tapetal programmed cell death and pollen wall patterning. Plant Physiology 182:962−76 doi: 10.1104/pp.19.00688 |
[53] |
Shi J, Tan H, Yu X, Liu Y, Liang W, et al. 2011. Defective Pollen Wall is required for anther and microspore development in rice and encodes a fatty acyl carrier protein reductase. The Plant Cell 23:2225−46 doi: 10.1105/tpc.111.087528 |
[54] |
Chen W, Yu X, Zhang K, Shi J, De Oliveira S, et al. 2011. Male Sterile2 encodes a plastid-localized fatty acyl carrier protein reductase required for pollen exine development in Arabidopsis. Plant Physiology 157:842−53 doi: 10.1104/pp.111.181693 |
[55] |
Mondol PC, Xu D, Duan L, Shi JX, Wang C, et al. 2020. Defective Pollen Wall 3 (DPW3), a novel alpha integrin-like protein, is required for pollen wall formation in rice. New Phytologist 225:807−22 doi: 10.1111/nph.16161 |
[56] |
Men X, Shi J, Liang W, Zhang Q, Lian G, et al. 2017. Glycerol-3-Phosphate Acyltransferase 3 (OsGPAT3) is required for anther development and male fertility in rice. Journal of Experimental Botany 68:513−26 doi: 10.1093/jxb/erw445 |
[57] |
Li H, Pinot F, Sauveplane V, Werck-Reichhart D, Diehl P, et al. 2010. Cytochrome P450 family member CYP704B2 catalyzes the ω-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. The Plant Cell 22:173−90 doi: 10.1105/tpc.109.070326 |
[58] |
Yang X, Wu D, Shi J, He Y, Pinot F, et al. 2014. Rice CYP703A3, a cytochrome P450 hydroxylase, is essential for development of anther cuticle and pollen exine. Journal of Integrative Plant Biology 56:979−94 doi: 10.1111/jipb.12212 |
[59] |
Zhang D, Liang W, Yin C, Zong J, Gu F, et al. 2010. OsC6, encoding a lipid transfer protein, is required for postmeiotic anther development In Rice. Plant Physiology 154:149−62 doi: 10.1104/pp.110.158865 |
[60] |
Zhao G, Shi J, Liang W, Xue F, Luo Q, et al. 2015. Two ATP Binding Cassette G Transporters, rice ATP Binding Cassette G26 and ATP Binding Cassette G15, collaboratively regulate rice male reproduction. Plant Physiology 169:2064−79 doi: 10.1104/pp.15.00262 |
[61] |
Zhu L, Shi J, Zhao G, Zhang D, Liang W. 2013. Post-meiotic deficient anther1 (PDA1) encodes an ABC transporter required for the development of anther cuticle and pollen exine in rice. Journal of Plant Biology 56:59−68 doi: 10.1007/s12374-013-0902-z |
[62] |
Xu D, Shi J, Rautengarten C, Yang L, Qian X, et al. 2017. Defective Pollen Wall 2 (DPW2) encodes an acyl transferase required for rice pollen development. Plant Physiology 173:240−55 doi: 10.1104/pp.16.00095 |
[63] |
Zhang H, Liang W, Yang X, Luo X, Jiang N, et al. 2010. Carbon Starved Anther encodes a MYB domain protein that regulates sugar partitioning required for rice pollen development. The Plant Cell 22:672−89 doi: 10.1105/tpc.109.073668 |
[64] |
Zhu X, Liang W, Cui X, Chen M, Yin C, et al. 2015. Brassinosteroids promote development of rice pollen grains and seeds by triggering expression of Carbon Starved Anther, a MYB domain protein. The Plant Journal 82:570−81 doi: 10.1111/tpj.12820 |
[65] |
Liu Z, Bao W, Liang W, Yin J, Zhang D. 2010. Identification of gamyb-4 and analysis of the regulatory role of GAMYB in rice anther development. Journal of Integrative Plant Biology 52:670−78 doi: 10.1111/j.1744-7909.2010.00959.x |
[66] |
Wang Y, Wang Y, Zhang D. 2006. Identification of the rice (Oryza sativa L.) mutant msp1-4 and expression analysis of its UDT1 and GAMYB genes. Journal of Plant Physiology and Molecular Biology 32:527−34 doi: 10.3321/j.issn:1671-3877.2006.05.004 |
[67] |
Xu J, Yang C, Yuan Z, Zhang D, Gondwe MY, et al. 2010. The ABORTED MICROSPORES regulatory network is required for postmeiotic male reproductive development in Arabidopsis thaliana. The Plant Cell 22:91−107 doi: 10.1105/tpc.109.071803 |
[68] |
Xu J, Ding Z, Vizcay-Barrena G, Shi J, Liang W, et al. 2014. ABORTED MICROSPORES acts as a master regulator of pollen wall formation in Arabidopsis. The Plant Cell 26:1544−56 doi: 10.1105/tpc.114.122986 |
[69] |
Yu J, Han J, Kim YJ, Song M, Yang Z, et al. 2017. Two rice receptor-like kinases maintain male fertility under changing temperatures. PNAS 114:12327−32 doi: 10.1073/pnas.1705189114 |
[70] |
Wang D, Li J, Sun L, Hu Y, Yu J, et al. 2021. Two rice MYB transcription factors maintain male fertility in response to photoperiod by modulating sugar partitioning. New Phytologist 231:1612−29 doi: 10.1111/nph.17512 |
[71] |
Li J, Wang D, Sun S, Sun L, Zong J, et al. 2022. The regulatory role of CARBON STARVED ANTHER-mediated photoperiod-dependent male fertility in rice. Plant Physiology 189:955−71 doi: 10.1093/plphys/kiac076 |
[72] |
Sun S, Wang D, Li J, Lei Y, Li G, et al. 2021. Transcriptome analysis reveals photoperiod-associated genes expressed in rice anthers. Frontiers in Plant Science 12:621561 doi: 10.3389/fpls.2021.621561 |
[73] |
Zhang H, Xu C, He Y, Zong J, Yang X, et al. 2013. Mutation in CSA creates a new photoperiod-sensitive genic male sterile line applicable for hybrid rice seed production. PNAS 110:76−81 doi: 10.1073/pnas.1213041110 |
[74] |
Li G, Liang W, Zhang X, Ren H, Hu J, et al. 2014. Rice actin-binding protein RMD is a key link in the auxin-actin regulatory loop that controls cell growth. PNAS 111:10377−82 doi: 10.1073/pnas.1401680111 |
[75] |
Zhang Z, Zhang Y, Tan H, Wang Y, Li G, et al. 2011. RICE MORPHOLOGY DETERMINANT encodes the type II formin FH5 and regulates rice morphogenesis. The Plant Cell 23:681−700 doi: 10.1105/tpc.110.081349 |
[76] |
Li G, Yang X, Zhang X, Song Y, Liang W, et al. 2018. Rice morphology determinant-mediated actin filament organization contributes to pollen tube growth. Plant Physiology 177:255−70 doi: 10.1104/pp.17.01759 |
[77] |
Huang G, Liang W, Sturrock CJ, Pandey BK, Giri J, et al. 2018. Rice actin binding protein RMD controls crown root angle in response to external phosphate. Nature Communications 9:2346 doi: 10.1038/s41467-018-04710-x |
[78] |
Song Y, Li G, Nowak J, Zhang X, Xu D, et al. 2019. The rice actin-binding protein RMD regulates light-dependent shoot gravitropism. Plant Physiology 181:630−44 doi: 10.1104/pp.19.00497 |
[79] |
Liu J, Guo J, Zhang H, Li N, Yang L, et al. 2009. Development and in-house validation of the event-specific polymerase chain reaction detection methods for genetically modified soybean MON89788 based on the cloned integration flanking sequence. Journal of Agricultural and Food Chemistry 57:10524−30 doi: 10.1021/jf900672d |
[80] |
Yang L, Guo J, Zhang H, Liu J, Zhang D. 2008. Qualitative and quantitative event-specific PCR detection methods for oxy-235 canola based on the 3' integration flanking sequence. Journal of Agricultural and Food Chemistry 56:1804−09 doi: 10.1021/jf073465i |
[81] |
Yang L, Pan A, Zhang H, Guo J, Yin C, et al. 2006. Event-specific qualitative and quantitative polymerase chain reaction analysis for genetically modified canola T45. Journal of Agricultural and Food Chemistry 54:9735−40 doi: 10.1021/jf061918y |
[82] |
Pan A, Yang L, Xu S, Yin C, Zhang K, et al. 2006. Event-specific qualitative and quantitative PCR detection of MON863 maize based upon the 3'-transgene integration sequence. Journal of Cereal Science 43:250−57 doi: 10.1016/j.jcs.2005.10.003 |
[83] |
Yang L, Pan A, Zhang K, Yin C, Qian B, et al. 2005. Qualitative and quantitative PCR methods for event-specific detection of genetically modified cotton Mon1445 and Mon531. Transgenic Research 14:817−31 doi: 10.1007/s11248-005-0010-z |
[84] |
Yang L, Shen H, Pan A, Chen J, Huang C, et al. 2005. Screening and construct specific detection methods of transgenic Huafan No. 1 tomato by conventional and real-time PCR. Journal of the Science of Food and Agriculture 85:2159−66 doi: 10.1002/jsfa.2193 |
[85] |
Yang L, Xu S, Pan A, Yin C, Zhang K, et al. 2005. Event-specific qualitative and quantitative PCR detection of genetically modified MON863 maize based on the 5'-transgene integration sequence. Journal of Agricultural and Food Chemistry 53:9312−18 doi: 10.1021/jf051782o |
[86] |
Weng HB, Aihu Pan, Litao Yang, Chengmei Zhang, Zhili Liu, et al. 2004. Estimating transgene copy number by real-time PCR assay using HMG I/Y as an endogenous reference gene in transgenic rapeseed. Plant Mol Biol Rep 22:289−300 doi: 10.1007/BF02773139 |
[87] |
Yang L, Ding JY, Zhang CM, Jia JW, Weng HB, et al. 2005. Estimating the copy number of transgenes in transformed rice by real-time quantitative PCR. Plant Cell Reports 23:759−63 doi: 10.1007/s00299-004-0881-0 |
[88] |
Yang L, Wang C, Holst-Jensen A, Morisset D, Lin Y, et al. 2013. Characterization of GM events by insert knowledge adapted re-sequencing approaches. Scientific Reports 3:2839 doi: 10.1038/srep02839 |
[89] |
Ding J, Jia J, Yang L, Weng H, Zhang C, et al. 2004. Validation of a rice specific gene, sucrose Phosphate Synthase, used as the endogenous reference gene for qualitative and real-time quantitative PCR detection of transgenes. Journal of Agricultural and Food Chemistry 52:3372−77 doi: 10.1021/jf049915d |
[90] |
Weng H, Yang L, Liu Z, Ding J, Pan A, et al. 2005. Novel reference gene, High-mobility-group protein I/Y, used in qualitative and real-time quantitative polymerase chain reaction detection of transgenic rapeseed cultivars. Journal of AOAC International 88:577−84 doi: 10.1093/jaoac/88.2.577 |
[91] |
Yang L, Pan A, Jia J, Ding J, Chen J, et al. 2005. Validation of a tomato-specific gene, LAT52, used as an endogenous reference gene in qualitative and real-time quantitative PCR detection of transgenic tomatoes. Journal of Agricultural and Food Chemistry 53:183−90 doi: 10.1021/jf0493730 |
[92] |
Yang L, Chen J, Huang C, Liu Y, Jia S, et al. 2005. Validation of a cotton-specific gene, Sad1, used as an endogenous reference gene in qualitative and real-time quantitative PCR detection of transgenic cottons. Plant Cell Reports 24:237−45 doi: 10.1007/s00299-005-0929-9 |
[93] |
Guo J, Yang L, Liu X, Zhang H, Qian B, et al. 2009. Applicability of the Chymopapain gene used as endogenous reference gene for transgenic Huanong No. 1 papaya detection. Journal of Agricultural and Food Chemistry 57:6502−9 doi: 10.1021/jf900656t |
[94] |
Huang H, Cheng F, Wang R, Zhang D, Yang L. 2013. Evaluation of four endogenous reference genes and their real-time PCR assays for common wheat quantification in GMOs detection. PLoS One 8:e75850 doi: 10.1371/journal.pone.0075850 |
[95] |
Yang L, Pan AH, Zhang K, Guo J, Yin C, et al. 2005. Identification and quantification of three genetically modified insect resistant cotton lines using conventional and TaqMan real-time polymerase chain reaction methods. Journal of Agricultural and Food Chemistry 53:6222−29 doi: 10.1021/jf050095u |
[96] |
Guo J, Yang L, Liu X, Guan X, Jiang L, et al. 2009. Characterization of the exogenous insert and development of event-specific PCR detection methods for genetically modified Huanong No. 1 papaya. Journal of Agricultural and Food Chemistry 57:7205−12 doi: 10.1021/jf901198x |
[97] |
Liu D, Shen J, Yang L, Zhang D. 2010. Evaluation of the impacts of different nuclear DNA content in the hull, endosperm, and embryo of rice seeds on GM rice quantification. Journal of Agricultural and Food Chemistry 58:4582−87 doi: 10.1021/jf9044233 |
[98] |
Wang C, Jiang L, Rao J, Liu Y, Yang L, et al. 2010. Evaluation of four genes in rice for their suitability as endogenous reference standards in quantitative PCR. Journal of Agricultural and Food Chemistry 58:11543−47 doi: 10.1021/jf102092c |
[99] |
Jiang L, Yang L, Rao J, Guo J, Wang S, et al. 2010. Development and in-house validation of the event-specific qualitative and quantitative PCR detection methods for genetically modified cotton MON15985. Journal of the Science of Food and Agriculture 90:402−8 doi: 10.1002/jsfa.3829 |
[100] |
Wu Y, Litao Yang, Cao Y, Song G, Shen P, et al. 2013. Collaborative validation of an event-specific quantitative real-time PCR method for genetically modified rice event TT51-1 detection. Journal of Agricultural and Food Chemistry 61:5953−60 doi: 10.1021/jf401339k |
[101] |
Yang L, Zhang H, Guo J, Pan L, Zhang D. 2008. International collaborative study of the endogenous reference gene LAT52 used for qualitative and quantitative analyses of genetically modified tomato. Journal of Agricultural and Food Chemistry 56:3438−43 doi: 10.1021/jf073464q |
[102] |
Jiang L, Litao Yang, Zhang H, Guo J, Mazzara M, et al. 2009. International collaborative study of the endogenous reference gene, sucrose Phosphate Synthase (SPS), used for qualitative and quantitative analysis of genetically modified rice. Journal of Agricultural and Food Chemistry 57:3525−32 doi: 10.1021/jf803166p |
[103] |
Shen K, Li X, Wang S, Pan Y, Shi Z, et al. 2010. Establishment and in-house validation of simplex and duplex PCR methods for event-specific detection of maize SYN-E3272-5 using a new reference molecule. Journal of AOAC International 93:663−75 doi: 10.1093/jaoac/93.2.663 |
[104] |
Wang S, Li X, Yang L, Shen K, Zhang D. 2009. Development and in-house validation of a reference molecule pMIR604 for simplex and duplex event-specific identification and quantification of GM maize MIR604. European Food Research and Technology 230:239−48 doi: 10.1007/s00217-009-1168-z |
[105] |
Li X, Yang L, Zhang J, Wang S, Shen K, et al. 2009. Simplex and duplex polymerase chain reaction analysis of Herculex® RW (59122) maize based on one reference molecule including separated fragments of 5' integration site and endogenous gene. Journal of AOAC International 92:1472−83 doi: 10.1093/jaoac/92.5.1472 |
[106] |
Zhang H, Yang L, Guo J, Li X, Jiang L, et al. 2008. Development of one novel multiple-target plasmid for duplex quantitative PCR analysis of roundup ready soybean. Journal of Agricultural and Food Chemistry 56:5514−20 doi: 10.1021/jf800033k |
[107] |
Yang L, Guo J, Pan A, Zhang H, Zhang K, et al. 2007. Event-specific quantitative detection of nine genetically modified maizes using one novel standard reference molecule. Journal of Agricultural and Food Chemistry 55:15−24 doi: 10.1021/jf0615754 |
[108] |
Zhang Y, Zhang D, Li W, Chen J, Peng Y, et al. 2003. A novel real-time quantitative PCR method using attached universal template probe. Nucleic Acids Research 31:e123 doi: 10.1093/nar/gng123 |
[109] |
Yang L, Liang W, Jiang L, Li W, Cao W, et al. 2008. A novel universal real-time PCR system using the attached universal duplex probes for quantitative analysis of nucleic acids. BMC Molecular Biology 9:54 doi: 10.1186/1471-2199-9-54 |
[110] |
Guo J, Yang L, Chen L, Morisset D, Li X, et al. 2011. MPIC: a high-throughput analytical method for multiple DNA targets. Analytical Chemistry 83:1579−86 doi: 10.1021/ac103266w |
[111] |
Guan X, Guo J, Shen P, Yang L, Zhang D. 2010. Visual and rapid detection of two genetically modified soybean events using loop-mediated isothermal amplification method. Food Analytical Methods 3:313−20 doi: 10.1007/s12161-010-9132-x |
[112] |
Dong W, Yang L, Shen K, Kim B, Kleter GA, et al. 2008. GMDD: a database of GMO detection methods. BMC Bioinformatics 9:260 doi: 10.1186/1471-2105-9-260 |
[113] |
Hu C, Shi J, Quan S, Cui B, Kleessen S, et al. 2014. Metabolic variation between japonica and indica rice cultivars as revealed by non-targeted metabolomics. Scientific Reports 4:5067 doi: 10.1038/srep05067 |
[114] |
Lin H, Rao J, Shi J, Hu C, Cheng F, et al. 2014. Seed metabolomic study reveals significant metabolite variations and correlations among different soybean cultivars. Journal of Integrative Plant Biology 56:826−36 doi: 10.1111/jipb.12228 |
[115] |
Rao J, Cheng F, Hu C, Quan S, Lin H, Wang J, Chen G, et al. 2014. Metabolic map of mature maize kernels. Metabolomics 10:775−787 doi: 10.1007/s11306-014-0624-3 |
[116] |
Rao J, Yang L, Guo J, Quan S, Chen G, et al. 2016. Metabolic changes in transgenic maize mature seeds over-expressing the Aspergillus niger phyA2. Plant Cell Reports 35:429−37 doi: 10.1007/s00299-015-1894-6 |