[1]

Zamljen T, Medic A, Hudina M, Veberic R, Slatnar A. 2022. Salt stress differentially affects the primary and secondary metabolism of peppers (Capsicum annuum L.) according to the genotype, fruit part, and salinity level. Plants 11:853

doi: 10.3390/plants11070853
[2]

Ma J, Wang Y, Wang L, Lin D, Yang Y. 2022. Transcriptomic analysis reveals the mechanism of the alleviation of salt stress by salicylic acid in pepper (Capsicum annuum L.). Molecular Biology Reports 50:3593−606

doi: 10.1007/s11033-022-08064-y
[3]

Kumar A, Yadav A, Dhanda PS, Delta AK, Sharma M, et al. 2022. Salinity stress and the influence of bioinoculants on the morphological and biochemical characteristics of faba bean (Vicia faba L.). Sustainability 14:14656

doi: 10.3390/su142114656
[4]

van Zelm E, Zhang Y, Testerink C. 2020. Salt tolerance mechanisms of plants. Annual Review of Plant Biology 71:403−33

doi: 10.1146/annurev-arplant-050718-100005
[5]

Deinlein U, Stephan AB, Horie T, Luo W, Xu G, et al. 2014. Plant salt-tolerance mechanisms. Trends in Plant Science 19:371−79

doi: 10.1016/j.tplants.2014.02.001
[6]

Zhu Y, Wang Q, Gao Z, Wang Y, Liu Y, et al. 2021. Analysis of phytohormone signal transduction in Sophora alopecuroides under salt stress. International Journal of Molecular Sciences 22:7313

doi: 10.3390/ijms22147313
[7]

Wang G, Ren X, Liu J, Yang F, Wang Y, et al. 2019. Transcript profiling reveals an important role of cell wall remodeling and hormone signaling under salt stress in garlic. Plant Physiology and Biochemistry 135:87−98

doi: 10.1016/j.plaphy.2018.11.033
[8]

Yue Y, Wang J, Ren W, Zhou Z, Long X, et al. 2022. Expression of genes related to plant hormone signal transduction in Jerusalem artichoke (Helianthus tuberosus L.) seedlings under salt stress. Agronomy 12:163

doi: 10.3390/agronomy12010163
[9]

Dou J, Wang J, Tang Z, Yu J, Wu Y, et al. 2022. Application of exogenous melatonin improves tomato fruit quality by promoting the accumulation of primary and secondary metabolites. Foods 11:4097

doi: 10.3390/foods11244097
[10]

Li Z, Zhang S, Xue J, Mu B, Song H, et al. 2022. Exogenous melatonin treatment induces disease resistance against Botrytis cinerea on post-harvest grapes by activating defence responses. Foods 11:2231

doi: 10.3390/foods11152231
[11]

Li J, Yang Y, Sun K, Chen Y, Chen X, et al. 2019. Exogenous melatonin enhances cold, salt and drought stress tolerance by improving antioxidant defense in tea plant (Camellia sinensis (L.) O. kuntze). Molecules 24:1826

doi: 10.3390/molecules24091826
[12]

Chen X, Sun C, Laborda P, He Y, Zhao Y, et al. 2019. Melatonin treatments reduce the pathogenicity and inhibit the growth of Xanthomonas oryzae pv. oryzicola. Plant Pathology 68:288−96

doi: 10.1111/ppa.12954
[13]

Li J, Huang T, Xia M, Lu J, Xu X, et al. 2023. Exogenous melatonin mediates radish (Raphanus sativus) and Alternaria brassicae interaction in a dose-dependent manner. Frontiers in Plant Science 14:1126669

doi: 10.3389/fpls.2023.1126669
[14]

Wang M, Gong J, Song C, Wang Z, Song S, et al. 2022. Exogenous melatonin alleviated growth inhibition and oxidative stress induced by drought stress in apple rootstock. BIOCELL 46:1763−70

doi: 10.32604/biocell.2022.018934
[15]

Xia H, Ni Z, Pan D. 2017. Effects of exogenous melatonin on antioxidant capacity in Actinidia seedlings under salt stress. IOP Conference Series: Earth and Environmental Science 94:012024

doi: 10.1088/1755-1315/94/1/012024
[16]

Liu J, Yue R, Si M, Wu M, Cong L, et al. 2019. Effects of exogenous application of melatonin on quality and sugar metabolism in 'zaosu' pear fruit. Journal of Plant Growth Regulation 38:1161−69

doi: 10.1007/s00344-019-09921-0
[17]

Wang Y, Zhang J, Ma Q, Zhang X, Luo X, et al. 2022. Exogenous melatonin treatment on post-harvest jujube fruits maintains physicochemical qualities during extended cold storage. PeerJ 10:e14155

doi: 10.7717/peerj.14155
[18]

Sun Y, Li M, Ji S, Cheng S, Zhou Q, et al. 2022. Effect of exogenous melatonin treatment on quality and softening of jujube fruit during storage. Journal of Food Processing and Preservation 46:e16662

doi: 10.1111/jfpp.16662
[19]

Liu M, Wang J. 2019. Fruit scientific research in New China in the past 70 years: Chinese jujube. Journal of Fruit Science 36:1369−81

doi: 10.13925/j.cnki.gsxb.Z11
[20]

Liu M, Wang J, Wang L, Liu P, Zhao J, et al. 2020. The historical and current research progress on jujube - a superfruit for the future. Horticulture Research 7:119

doi: 10.1038/s41438-020-00346-5
[21]

Wu H, Su W, Shi M, Xue X, Ren H, et al. 2023. Genomic C-value variation analysis in jujube (Ziziphus jujuba mill.) in the middle Yellow River Basin. Plants 12:858

doi: 10.3390/plants12040858
[22]

Hu X. 2021. Genetic diversity phylogeography and population demography of Ziziphus jujuba var. spinosa. Shanxi Agricultural University. https://doi.org/10.27285/d.cnki.gsxnu.2021.000007

[23]

Gao M, Wang L, Li M, Sun P, Sadeghnezhad E, et al. 2021. Physiological and transcriptome analysis accentuates microtubules and calcium signaling in Ziziphus jujuba Mill 'Dongzao' autotetraploids with sensitive cold tolerance. Scientia Horticulturae 285:110183

doi: 10.1016/j.scienta.2021.110183
[24]

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods 9:357−59

doi: 10.1038/nmeth.1923
[25]

Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

doi: 10.1186/1471-2105-12-323
[26]

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550

doi: 10.1186/s13059-014-0550-8
[27]

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, et al. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research 20:1297−303

doi: 10.1101/gr.107524.110
[28]

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13:2498−504

doi: 10.1101/gr.1239303
[29]

Tian F, Yang D, Meng Y, Jin J, Gao G. 2020. PlantRegMap: charting functional regulatory maps in plants. Nucleic Acids Research 48:D1104−D1113

doi: 10.1093/nar/gkz1020
[30]

Jin J, Tian F, Yang D, Meng Y, Kong L, et al. 2017. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Research 45:D1040−D1045

doi: 10.1093/nar/gkw982
[31]

Zhao C, Yang M, Wu X, Wang Y, Zhang R. 2021. Physiological and transcriptomic analyses of the effects of exogenous melatonin on drought tolerance in maize (Zea mays L.). Plant Physiology and Biochemistry 168:128−42

doi: 10.1016/j.plaphy.2021.09.044
[32]

Chen Y, Chen Y, Shi Z, Jin Y, Sun H, et al. 2019. Biosynthesis and signal transduction of ABA, JA, and BRs in response to drought stress of Kentucky bluegrass. International Journal of Molecular Sciences 20:1289

doi: 10.3390/ijms20061289
[33]

Bachani J, Mahanty A, Aftab T, Kumar K. 2022. Insight into calcium signalling in salt stress response. South African Journal of Botany 151:1−8

doi: 10.1016/j.sajb.2022.09.033
[34]

Shan X, Li Y, Jiang Y, Jiang Z, Hao W, et al. 2013. Transcriptome Profile Analysis of Maize Seedlings in Response to High-salinity, Drought and Cold Stresses by Deep Sequencing. Plant Molecular Biology Reporter 31:1485−91

doi: 10.1007/s11105-013-0622-z
[35]

Wei J, Liang J, Liu D, Liu Y, Liu G, et al. 2022. Melatonin-induced physiology and transcriptome changes in banana seedlings under salt stress conditions. Frontiers in Plant Science 13:938262

doi: 10.3389/fpls.2022.938262
[36]

Rushton PJ, Somssich IE, Ringler P, Shen QJ. 2010. WRKY transcription factors. Trends in Plant Science 15:247−58

doi: 10.1016/j.tplants.2010.02.006
[37]

Mahmood K, El-Kereamy A, Kim SH, Nambara E, Rothstein SJ. 2016. ANAC032 positively regulates age-dependent and stress-induced senescence in Arabidopsis thaliana. Plant and Cell Physiology 57:2029−46

doi: 10.1093/pcp/pcw120
[38]

Tan X, Long W, Zeng L, Ding X, Cheng Y, et al. 2019. Melatonin-induced transcriptome variation of rapeseed seedlings under salt stress. International Journal of Molecular Sciences 20:5355

doi: 10.3390/ijms20215355
[39]

Das A, Singh S, Islam Z, Munshi AD, Behera TK, et al. 2022. Current progress in genetic and genomics-aided breeding for stress resistance in cucumber (Cucumis sativus L.). Scientia Horticulturae 300:111059

doi: 10.1016/j.scienta.2022.111059
[40]

Brengi SH, Khedr AAEM, Abouelsaad IA. 2022. Effect of melatonin or cobalt on growth, yield and physiological responses of cucumber (Cucumis sativus L.) plants under salt stress. Journal of the Saudi Society of Agricultural Sciences 21:51−60

doi: 10.1016/j.jssas.2021.06.012
[41]

Othman YA, Hani MB, Ayad JY, St Hilaire R. 2023. Salinity level influenced morpho-physiology and nutrient uptake of young citrus rootstocks. Heliyon 9:E13336

doi: 10.1016/j.heliyon.2023.e13336
[42]

Simpson CR, Nelson SD, Melgar JC, Jifon J, King SR, et al. 2014. Growth response of grafted and ungrafted citrus trees to saline irrigation. Scientia Horticulturae 169:199−205

doi: 10.1016/j.scienta.2014.02.020
[43]

Nawaz MA, Huang Y, Bie Z, Ahmed W, Reiter RJ, et al. 2015. Melatonin: current status and future perspectives in plant science. Frontiers in Plant Science 6:1230

doi: 10.3389/fpls.2015.01230
[44]

Arnao MB, Hernández-Ruiz J. 2015. Functions of melatonin in plants: a review. Journal of Pineal Research 59:133−50

doi: 10.1111/jpi.12253
[45]

Ahmad R, Manzoor M, Muhammad HMD, Altaf MA, Shakoor A. 2023. Exogenous melatonin spray enhances salinity tolerance in Zizyphus germplasm: a brief theory. Life 13:493

doi: 10.3390/life13020493
[46]

Duan W, Lu B, Liu L, Meng Y, Ma X, et al. 2022. Effects of exogenous melatonin on root physiology, transcriptome and metabolome of cotton seedlings under salt stress. International Journal of Molecular Sciences 23:9456

doi: 10.3390/ijms23169456
[47]

Li L, Shao T, Yang H, Chen M, Gao X, et al. 2017. The endogenous plant hormones and ratios regulate sugar and dry matter accumulation in Jerusalem artichoke in salt-soil. Science of The Total Environment 578:40−46

doi: 10.1016/j.scitotenv.2016.06.075
[48]

Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, et al. 2015. Phytohormones and plant responses to salinity stress: a review. Plant Growth Regulation 75:391−404

doi: 10.1007/s10725-014-0013-y
[49]

Yu Z, Duan X, Luo L, Dai S, Ding Z, et al. 2020. How plant hormones mediate salt stress responses. Trends in Plant Science 25:1117−30

doi: 10.1016/j.tplants.2020.06.008
[50]

Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, et al. 2009. Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 106:17588−93

doi: 10.1073/pnas.0907095106
[51]

Di T, Zhao L, Chen H, Qian W, Wang P, et al. 2019. Transcriptomic and metabolic insights into the distinctive effects of exogenous melatonin and gibberellin on terpenoid synthesis and plant hormone signal transduction pathway in Camellia sinensis. Journal of Agricultural and Food Chemistry 67:4689−99

doi: 10.1021/acs.jafc.9b00503
[52]

Wang J, Qin H, Zhou S, Wei P, Zhang H, et al. 2020. The ubiquitin-binding protein OsDSK2a mediates seedling growth and salt responses by regulating gibberellin metabolism in rice. The Plant Cell 32:414−28

doi: 10.1105/tpc.19.00593
[53]

Negi S, Bhakta S, Ganapathi TR, Tak H. 2023. MusaNAC29-like transcription factor improves stress tolerance through modulation of phytohormone content and expression of stress responsive genes. Plant Science 326:111507

doi: 10.1016/j.plantsci.2022.111507
[54]

Wang X, Song Z, Ti Y, Liu Y, Li Q. 2022. Physiological response and transcriptome analysis of Prunus mume to early salt stress. Journal of Plant Biochemistry and Biotechnology 31:330−42

doi: 10.1007/s13562-021-00680-2
[55]

Zhang X, Liu W, Lv Y, Bai J, Li T, et al. 2022. Comparative transcriptomics reveals new insights into melatonin-enhanced drought tolerance in naked oat seedlings. PeerJ 10:e13669

doi: 10.7717/peerj.13669
[56]

Jing X, Cai C, Fan S, Wang L, Zeng X. 2019. Spatial and temporal calcium signaling and its physiological effects in moso bamboo under drought stress. Forests 10:224

doi: 10.3390/f10030224
[57]

Baillo EH, Kimotho RN, Zhang Z, Xu P. 2019. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes 10:771

doi: 10.3390/genes10100771
[58]

Gao Y, Liu J, Yang F, Zhang G, Wang D, et al. 2020. The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum. Physiologia Plantarum 168:98−117

doi: 10.1111/ppl.12978