[1]

Lang GA. 2005. Underlying principles of high density sweet cherry production. Acta Horticulturae 667:325−36

doi: 10.17660/ActaHortic.2005.667.47
[2]

Robinson TL, DeMarree AM, Hoying SA. 2007. An economic comparison of five high density apple planting systems. Acta Horticulturae 732:481−89

doi: 10.17660/ActaHortic.2007.732.73
[3]

Webster AD. 1995. Rootstock and interstock effects on deciduous fruit tree vigour, precocity, and yield productivity. New Zealand Journal of Crop and Horticultural Science 23:373−82

doi: 10.1080/01140671.1995.9513913
[4]

Brewer LR, Palmer JW. 2011. Global pear breeding programmes: goals, trends and progress for new cultivars and new rootstocks. Acta Horticulturae 909:105−19

doi: 10.17660/ActaHortic.2011.909.10
[5]

Elkins RB, Bell R, Einhorn T. 2012. Needs assessment for future US pear rootstock research directions based on the current state of pear production and rootstock research. Journal of the American Pomological Society 66:153−63

[6]

Rusholme Pilcher RL, Celton JM, Gardiner SE, Tustin DS. 2008. Genetic markers linked to the dwarfing trait of apple rootstock 'Malling 9'. Journal of the American Society for Horticultural Science 133:100−6

doi: 10.21273/JASHS.133.1.100
[7]

Fazio G, Wan Y, Kviklys D, Romero L, Adams R, et al. 2014. Dw2, a new dwarfing locus in apple rootstocks and its relationship to induction of early bearing in apple scions. Journal of the American Society for Horticultural Science 139:87−98

doi: 10.21273/JASHS.139.2.87
[8]

Foster TM, Celton JM, Chagné D, Tustin DS, Gardiner SE. 2015. Two quantitative trait loci, Dw1 and Dw2, are primarily responsible for rootstock-induced dwarfing in apple. Horticulture Research 2:15001

doi: 10.1038/hortres.2015.1
[9]

Harrison N, Harrison RJ, Barber-Perez N, Cascant-Lopez E, Cobo-Medina M, et al. 2016. A new three-locus model for rootstock-induced dwarfing in apple revealed by genetic mapping of root bark percentage. Journal of Experimental Botany 67:1871−81

doi: 10.1093/jxb/erw001
[10]

Wang C, Tian Y, Buck EJ, Gardiner SE, Dai H, et al. 2011. Genetic mapping of PcDw determining pear dwarf trait. Journal of the American Society for Horticultural Science 136:48−53

doi: 10.21273/JASHS.136.1.48
[11]

Knäbel M, Friend AP, Palmer JW, Diack R, Wiedow C, et al. 2015. Genetic control of pear rootstock-induced dwarfing and precocity is linked to a chromosomal region syntenic to the apple Dw1 loci. BMC Plant Biology 15:230

doi: 10.1186/s12870-015-0620-4
[12]

Teh SL, Evans K. 2023. Pear rootstock breeding in the U. S. Pacific Northwest. Acta Horticulturae. In press.

[13]

Postman J, Kim D, Bassil N. 2013. OH×F paternity perplexes pear producers. Journal of the American Pomological Society 67:157−67

[14]

Montanari S, Postman J, Bassil NV, Neale DB. 2020. Reconstruction of the largest pedigree network for pear cultivars and evaluation of the genetic diversity of the USDA-ARS national Pyrus collection. G3 Genes|Genomes|Genetics 10:3285−97

doi: 10.1534/g3.120.401327
[15]

Montanari S, Bianco L, Allen BJ, Martínez-García PJ, Bassil NV, et al. 2019. Development of a highly efficient Axiom™ 70 K SNP array for Pyrus and evaluation for high-density mapping and germplasm characterization. BMC Genomics 20:331

doi: 10.1186/s12864-019-5712-3
[16]

Grattapaglia D, Sederoff R. 1994. Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121−37

doi: 10.1093/genetics/137.4.1121
[17]

Van Ooijen JW. 2006. JoinMap® 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen, The Netherland, 56 pp.

[18]

Broman KW, Wu H, Sen Ś, Churchill GA. 2003. R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889−90

doi: 10.1093/bioinformatics/btg112
[19]

Montanari S, Saeed M, Knäbel M, Kim Y, Troggio M, et al. 2013. Identification of Pyrus single nucleotide polymorphisms (SNPs) and evaluation for genetic mapping in European pear and interspecific Pyrus hybrids. PLoS ONE 8:e77022

doi: 10.1371/journal.pone.0077022
[20]

Zurn JD, Norelli JL, Montanari S, Bell R, Bassil NV. 2020. Dissecting genetic resistance to fire blight in three pear populations. Phytopathology 110:1305−11

doi: 10.1094/PHYTO-02-20-0051-R
[21]

Chagné D, Crowhurst RN, Troggio M, Davey MW, Gilmore B, et al. 2012. Genome-wide SNP detection, validation, and development of an 8K SNP array for apple. PLoS ONE 7:e31745

doi: 10.1371/journal.pone.0031745
[22]

Chagné D, Crowhurst RN, Pindo M, Thrimawithana A, Deng C, Ireland H, et al. 2014. The draft genome sequence of European pear (Pyrus communis L. 'Bartlett'). PLoS ONE 9:e92644

doi: 10.1371/journal.pone.0092644
[23]

Linsmith G, Rombauts S, Montanari S, Deng CH, Celton JM, et al. 2019. Pseudo-chromosome–length genome assembly of a double haploid “Bartlett” pear (Pyrus communis L.). GigaScience 8:giz138

doi: 10.1093/gigascience/giz138
[24]

Wu J, Wang Z, Shi Z, Zhang S, Ming R, et al. 2013. The genome of the pear (Pyrus bretschneideri Rehd.). Genome Research 23:396−408

doi: 10.1101/gr.144311.112
[25]

Greenspan G, Geiger D. 2004. Model-based inference of haplotype block variation. Journal of Computational Biology 11:493−504

doi: 10.1145/640075.640092
[26]

York Z, Teh SL, Evans K. 2023. Fire blight susceptibility of 20 diverse pear (Pyrus spp.) rootstock breeding parents. Journal of the American Pomological Society 77:66−74