[1]

Lai M, Sun X, Chen D, Xie Y, Zhang S. 2014. Age-related trends in genetic parameters for Larix kaempferi and their implications for early selection. BMC Genetics 15:S10

doi: 10.1186/1471-2156-15-S1-S10
[2]

Peer KR, Greenwood MS. 2001. Maturation, topophysis and other factors in relation to rooting in Larix. Tree Physiology 21:267−72

doi: 10.1093/treephys/21.4.267
[3]

Rubinelli PM, Chuck G, Li X, Meilan R. 2013. Constitutive expression of the Corngrass1 microRNA in poplar affects plant architecture and stem lignin content and composition. Biomass and Bioenergy 54:312−321

doi: 10.1016/j.biombioe.2012.03.001
[4]

Begum S, Nakaba S, Oribe, Y, Kubo, T, Funada R. 2010. Cambial sensitivity to rising temperatures by natural condition and artificial heating from late winter to early spring in the evergreen conifer Cryptomeria japonica. Trees 24:43−52

doi: 10.1007/s00468-009-0377-1
[5]

Li W, Yang W, Zhang S, Han S, Qi L. 2017. Transcriptome analysis provides insights into wood formation during larch tree aging. Tree Genetics & Genomes 13:19

doi: 10.1007/s11295-017-1106-3
[6]

Zeng Q, Rossi S, Yang B. 2017. Effects of age and size on xylem phenology in two conifers of Northwestern China. Frontiers in Plant Science 8:2264

doi: 10.3389/fpls.2017.02264
[7]

Rossi S, Deslauriers A, AnfodilloT, Carrer M. 2008. Age-dependent xylogenesis in timberline conifers. New Phytologist 177:199−208

doi: 10.1111/j.1469-8137.2007.02235.x
[8]

Mellerowicz EJ, Riding RT, Greenwood MS. 1995. Nuclear and cytoplasmic changes associated with maturation in the vascular cambium of Larix laricina. Tree Physiology 15:443−49

doi: 10.1093/treephys/15.7-8.443
[9]

Li X, Camarero JJ, Case B, Liang E, Rossi S. 2016. The onset of xylogenesis is not related to distance from the crown in Smith fir trees from south-eastern Tibetan Plateau. Canadian Journal of Forest Research 46:885−89

doi: 10.1139/cjfr-2016-0092
[10]

Li X, Liang E, Gričar J, Prislan P, Rossi S, et al. 2013. Age dependence of xylogenesis and its climatic sensitivity in Smith fir on the south-eastern Tibetan Plateau. Tree Physiology 33:48−56

doi: 10.1093/treephys/tps113
[11]

Wang L, Cui J, Jin B, Zhao J, Xu H, et al. 2020. Multifeature analyses of vascular cambial cells reveal longevity mechanisms in old Ginkgo biloba trees. Proceedings of the National Academy of Sciences of the United States of America 117:2201−10

doi: 10.1073/pnas.1916548117
[12]

Brunner AM, Varkonyi-Gasic E, Jones RC. Phase change and phenology in trees. In Comparative and Evolutionary Genomics of Angiosperm Trees, eds Groover AT, Cronk QCB. 21: xxii, 366 pp. Cham, Switzerland: Springer International Publishing. pp. 227–74. https://doi.org/10.1007/7397_2016_30

[13]

Li Y, Chen T, Khan WU, An X. 2023. Regulatory roles of miRNAs associated with the aging pathway in tree vegetative phase changes. Forestry Research 3:9

doi: 10.48130/FR-2023-0009
[14]

Li X, Ye Z, Cheng D, Zang Q, Qi L, et al. 2023. LaDAL1 coordinates age and environmental signals in the life cycle of Larix kaempferi. International Journal of Molecular Sciences 24:426

doi: 10.3390/ijms24010426
[15]

Zhang Y, Zang Q, Qi L, Han S, Li W. 2020. Effects of cutting, pruning, and grafting on the expression of age-related genes in Larix kaempferi. Forests 11:218

doi: 10.3390/f11020218
[16]

Xiang W, Li W, Zhang S, Qi L. 2019. Transcriptome-wide analysis to dissect the transcription factors orchestrating the phase change from vegetative to reproductive development in Larix kaempferi. Tree Genetics & Genomes 15:68

doi: 10.1007/s11295-019-1376-z
[17]

Ma J, Chen X, Song Y, Zhang G, Zhou X, et al. 2021. MADS-box transcription factors MADS11 and DAL1 interact to mediate the vegetative-to-reproductive transition in pine. Plant Physiology 187:247−62

doi: 10.1093/plphys/kiab250
[18]

Shi S, Yan S, Zhao C, Zhang P, Yang L, et al. 2020. Deep sequencing and analysis of transcriptomes of Pinus koraiensis Sieb. & Zucc. Forests 11:350

doi: 10.3390/f11030350
[19]

Xu H, Cao D, Feng J, Wu H, Lin J, et al. 2016. Transcriptional regulation of vascular cambium activity during the transition from juvenile to mature stages in Cunninghamia lanceolata. Journal of Plant Physiology 200:7−17

doi: 10.1016/j.jplph.2016.06.003
[20]

Ma J, Chen X, Han F, Song Y, Zhou B, et al. 2022. The long road to bloom in conifers. Forestry Research 2:16

doi: 10.48130/FR-2022-0016
[21]

Wang J, Ding J. 2023. Molecular mechanisms of flowering phenology in trees. Forestry Research 3:2

doi: 10.48130/FR-2023-0002
[22]

Carlsbecker A, Tandre K, Johanson U, Englund M, Engström P. 2004. The MADS-box gene DAL1 is a potential mediator of the juvenile-to-adult transition in Norway spruce (Picea abies). The Plant Journal 40:546−57

doi: 10.1111/j.1365-313X.2004.02226.x
[23]

Cao Y, Ma L. 2019. To splice or to transcribe: SKIP-mediated environmental fitness and development in plants. Frontiers in Plant Science 10:1222

doi: 10.3389/fpls.2019.01222
[24]

Roberts RG. 1995. Dystrophin, its gene, and the dystrophinopathies. Advances in Genetics 33:177−231

doi: 10.1016/s0065-2660(08)60334-x
[25]

Pandya-Jones A. 2011. Pre-mRNA splicing during transcription in the mammalian system. Wiley Interdisciplinary Reviews RNA 2:700−17

doi: 10.1002/wrna.86
[26]

Sharp PA. 1994. Split genes and RNA splicing. Cell 77:805−15

doi: 10.1016/0092-8674(94)90130-9
[27]

Horowitz DS. 2012. The mechanism of the second step of pre-mRNA splicing. Wiley Interdisciplinary Reviews RNA 3:331−50

doi: 10.1002/wrna.112
[28]

Sun C, Xie Y, Li Z, Liu Y, Sun X, et al. 2022. The Larix kaempferi genome reveals new insights into wood properties. Journal of Integrative Plant Biology 64:1364−73

doi: 10.1111/jipb.13265
[29]

Hu B, Jin J, Guo A, Zhang H, Luo J, et al. 2015. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296−97

doi: 10.1093/bioinformatics/btu817
[30]

Li W, Zhang S, Han S, Wu T, Zhang J, et al. 2014. The post-transcriptional regulation of LaSCL6 by miR171 during maintenance of embryogenic potential in Larix kaempferi (Lamb.) Carr. Tree Genetics & Genomes 10:223−29

doi: 10.1007/s11295-013-0668-y
[31]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402−8

doi: 10.1006/meth.2001.1262
[32]

Li J, Han F, Yuan T, Li W, Li Y, et al. 2023. The methylation landscape of giga-genome and the epigenetic timer of age in Chinese pine. Nature Communications 14:1947

doi: 10.1038/s41467-023-37684-6
[33]

Tellier M, Maudlin I, Murphy S. 2020. Transcription and splicing: a two-way street. Wiley Interdisciplinary Reviews RNA 11:e1593

doi: 10.1002/wrna.1593
[34]

Kathare PK, Huq E. 2021. Light-regulated pre-mRNA splicing in plants. Current Opinion in Plant Biology 63:102037

doi: 10.1016/j.pbi.2021.102037
[35]

Lin J, Zhu Z. 2021. Plant responses to high temperature: a view from pre-mRNA alternative splicing. Plant Molecular Biology 105:575−83

doi: 10.1007/s11103-021-01117-z