[1] |
Patel P, Woodgett JR. 2017. Glycogen synthase kinase 3: a kinase for all pathways? Current Topics in Developmental Biology 123:277−302 doi: 10.1016/bs.ctdb.2016.11.011 |
[2] |
Mariappan MM, Prasad S, D'Silva K, Cedillo E, Sataranatarajan K, et al. 2014. Activation of glycogen synthase kinase 3β ameliorates diabetes-induced kidney injury. The Journal of Biological Chemistry 289:35363−75 doi: 10.1074/jbc.M114.587840 |
[3] |
Beurel E, Grieco SF, Jope RS. 2015. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacology & Therapeutics 148:114−31 doi: 10.1016/j.pharmthera.2014.11.016 |
[4] |
Zumbrunn J, Kinoshita K, Hyman AA, Näthke IS. 2001. Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3β phosphorylation. Current Biology 11:44−49 doi: 10.1016/S0960-9822(01)00002-1 |
[5] |
Jonak C, Hirt H. 2002. Glycogen synthase kinase 3/SHAGGY-like kinases in plants: an emerging family with novel functions. Trends in Plant Science 7:457−61 doi: 10.1016/S1360-1385(02)02331-2 |
[6] |
Koh S, Lee SC, Kim MK, Koh JH, Lee S, et al. 2007. T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Molecular Biology 65:453−66 doi: 10.1007/s11103-007-9213-4 |
[7] |
Qi X, Chanderbali AS, Wong GKS, Soltis DE, Soltis PS. 2013. Phylogeny and evolutionary history of glycogen synthase kinase 3/SHAGGY-like kinase genes in land plants. BMC Evolutionary Biology 13:143 doi: 10.1186/1471-2148-13-143 |
[8] |
Youn JH, Kim TW. 2015. Functional insights of plant GSK3-like kinases: multi-taskers in diverse cellular signal transduction pathways. Molecular Plant 8:552−65 doi: 10.1016/j.molp.2014.12.006 |
[9] |
Kim TW, Guan S, Sun Y, Deng Z, Tang W, et al. 2009. Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nature Cell Biology 11:1254−60 doi: 10.1038/ncb1970 |
[10] |
Dal Santo S, Stampfl H, Krasensky J, Kempa S, Gibon Y, et al. 2012. Stress-induced GSK3 regulates the redox stress response by phosphorylating glucose-6-phosphate dehydrogenase in Arabidopsis. The Plant Cell 24:3380−92 doi: 10.1105/tpc.112.101279 |
[11] |
He J, Gendron JM, Yang Y, Li J, Wang Z. 2002. The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 99:10185−90 doi: 10.1073/pnas.152342599 |
[12] |
Kim TW, Michniewicz M, Bergmann DC, Wang ZY. 2012. Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Nature 482:419−22 doi: 10.1038/nature10794 |
[13] |
Han S, Cho H, Noh J, Qi J, Jung HJ, et al. 2018. BIL1-mediated MP phosphorylation integrates PXY and cytokinin signalling in secondary growth. Nature Plants 4:605−14 doi: 10.1038/s41477-018-0180-3 |
[14] |
Li T, Lei W, He R, Tang X, Han J, et al. 2020. Brassinosteroids regulate root meristem development by mediating BIN2-UPB1 module in Arabidopsis. PLoS Genetics 16:e1008883 doi: 10.1371/journal.pgen.1008883 |
[15] |
Cheng Y, Zhu W, Chen Y, Ito S, Asami T, et al. 2014. Brassinosteroids control root epidermal cell fate via direct regulation of a MYB-bHLH-WD40 complex by GSK3-like kinases. eLife 3:e02525 doi: 10.7554/eLife.02525 |
[16] |
Cho H, Ryu H, Rho S, Hill K, Smith S, et al. 2014. A secreted peptide acts on BIN2-mediated phosphorylation of ARFs to potentiate auxin response during lateral root development. Nature Cell Biology 16:66−76 doi: 10.1038/ncb2893 |
[17] |
Hu Y, Yu D. 2014. BRASSINOSTEROID INSENSITIVE2 interacts with ABSCISIC ACID INSENSITIVE5 to mediate the antagonism of brassinosteroids to abscisic acid during seed germination in Arabidopsis. The Plant Cell 26:4394−408 doi: 10.1105/tpc.114.130849 |
[18] |
Cai Z, Liu J, Wang H, Yang C, Chen Y, et al. 2014. GSK3-like kinases positively modulate abscisic acid signaling through phosphorylating subgroup III SnRK2s in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 111:9651−56 doi: 10.1073/pnas.1316717111 |
[19] |
Wang H, Tang J, Liu J, Hu J, Liu J, et al. 2018. Abscisic acid signaling inhibits brassinosteroid signaling through dampening the dephosphorylation of BIN2 by ABI1 and ABI2. Molecular plant 11:315−25 doi: 10.1016/j.molp.2017.12.013 |
[20] |
Sánchez-Rodríguez C, Ketelaar K, Schneider R, Villalobos JA, Somerville CR, et al. 2017. BRASSINOSTEROID INSENSITIVE2 negatively regulates cellulose synthesis in Arabidopsis by phosphorylating cellulose synthase 1. Proceedings of the National Academy of Sciences of the United States of America 114:3533−38 doi: 10.1073/pnas.1615005114 |
[21] |
Dong X, Nou IS, Yi H, Hur Y. 2015. Suppression of ASKβ (AtSK32), a Clade III Arabidopsis GSK3, leads to the pollen defect during late pollen development. Molecules and Cells 38:506−17 doi: 10.14348/molcells.2015.2323 |
[22] |
Jiang H, Tang B, Xie Z, Nolan T, Ye H, et al. 2019. GSK3-like kinase BIN2 phosphorylates RD26 to potentiate drought signaling in Arabidopsis. The Plant Journal 100:923−37 doi: 10.1111/tpj.14484 |
[23] |
Eremina M, Unterholzner SJ, Rathnayake AI, Castellanos M, Khan M, et al. 2016. Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants. Proceedings of the National Academy of Sciences of the United States of America 113:E5982−E5991 doi: 10.1073/pnas.1611477113 |
[24] |
Ye K, Li H, Ding Y, Shi Y, Song C, et al. 2019. BRASSINOSTEROID-INSENSITIVE2 negatively regulates the stability of transcription factor ICE1 in response to cold stress in Arabidopsis. The Plant Cell 31:2682−96 doi: 10.1105/tpc.19.00058 |
[25] |
Wrzaczek M, Rozhon W, Jonak C. 2007. A proteasome-regulated glycogen synthase kinase-3 modulates disease response in plants. The Journal of Biological Chemistry 282:5249−55 doi: 10.1074/jbc.M610135200 |
[26] |
Stampfl H, Fritz M, Dal Santo S, Jonak C. 2016. The GSK3/Shaggy-like kinase ASKa contributes to pattern-triggered immunity. Plant Physiology 171:1366−77 doi: 10.1104/pp.15.01741 |
[27] |
Tong H, Liu L, Jin Y, Du L, Yin Y, et al. 2012. DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice. The Plant Cell 24:2562−77 doi: 10.1105/tpc.112.097394 |
[28] |
Gao X, Zhang J, Zhang X, Zhou J, Jiang Z, et al. 2019. Rice qGL3/OsPPKL1 functions with the GSK3/SHAGGY-like kinase OsGSK3 to modulate brassinosteroid signaling. The Plant Cell 31:1077−93 doi: 10.1105/tpc.18.00836 |
[29] |
He C, Gao H, Wang H, Guo Y, He M, et al. 2021. GSK3-mediated stress signaling inhibits legume–rhizobium symbiosis by phosphorylating GmNSP1 in soybean. Molecular Plant 14:488−502 doi: 10.1016/j.molp.2020.12.015 |
[30] |
Dogra SC, Eini O, Rezaian MA, Randles JW. 2009. A novel shaggy-like kinase interacts with the Tomato leaf curl virus pathogenicity determinant C4 protein. Plant Molecular Biology 71:25−38 doi: 10.1007/s11103-009-9506-x |
[31] |
Huang S, Liu Y, Deng R, Lei T, Tian A, et al. 2021. Genome-wide identification and expression analysis of the GSK gene family in Solanum tuberosum L. under abiotic stress and phytohormone treatments and functional characterization of StSK21 involvement in salt stress. Gene 766:145156 doi: 10.1016/j.gene.2020.145156 |
[32] |
Mei Y, Yang X, Huang C, Zhang X, Zhou X. 2018. Tomato leaf curl Yunnan virus-encoded C4 induces cell division through enhancing stability of Cyclin D 1.1 via impairing NbSKη -mediated phosphorylation in Nicotiana benthamiana. PLoS Pathogens 14:e1006789 doi: 10.1371/journal.ppat.1006789 |
[33] |
Qiu A, Wu J, Lei Y, Cai Y, Wang S, et al. 2018. CaSK23, a putative GSK3/SHAGGY-like kinase of Capsicum annuum, acts as a negative regulator of pepper's response to Ralstonia solanacearum attack. International Journal of Molecular Sciences 19:2698 doi: 10.3390/ijms19092698 |
[34] |
Wang L, Yang Z, Zhang B, Yu D, Liu J, et al. 2018. Genome-wide characterization and phylogenetic analysis of GSK gene family in three species of cotton: evidence for a role of some GSKs in fiber development and responses to stress. BMC Plant Biology 18:330 doi: 10.1186/s12870-018-1526-8 |
[35] |
Christov NK, Christova PK, Kato H, Liu Y, Sasaki K, et al. 2014. TaSK5, an abiotic stress-inducible GSK3/shaggy-like kinase from wheat, confers salt and drought tolerance in transgenic Arabidopsis. Plant Physiology and Biochemistry 84:251−60 doi: 10.1016/j.plaphy.2014.10.002 |
[36] |
Zhang P, Zhang L, Chen T, Jing F, Liu Y, et al. 2022. Genome-wide identification and expression analysis of the GSK gene family in wheat (Triticum aestivum L.). Molecular Biology Reports 49:2899−913 doi: 10.1007/s11033-021-07105-2 |
[37] |
Groszyk J, Yanushevska Y, Zielezinski A, Nadolska-Orczyk A, Karlowski WM, et al. 2018. Annotation and profiling of barley GLYCOGEN SYNTHASE3/Shaggy-like genes indicated shift in organ-preferential expression. PLoS ONE 13:e0199364 doi: 10.1371/journal.pone.0199364 |
[38] |
Song X, Sun P, Yuan J, Gong K, Li N, et al. 2021. The celery genome sequence reveals sequential paleo-polyploidizations, karyotype evolution and resistance gene reduction in apiales. Plant Biotechnology Journal 19:731−44 doi: 10.1111/pbi.13499 |
[39] |
Song X, Wang J, Li N, Yu J, Meng F, et al. 2020. Deciphering the high-quality genome sequence of coriander that causes controversial feelings. Plant Biotechnology Journal 18:1444−56 doi: 10.1111/pbi.13310 |
[40] |
Iorizzo M, Ellison S, Senalik D, Zeng P, Satapoomin P, et al. 2016. A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nature Genetics 48:657−66 doi: 10.1038/ng.3565 |
[41] |
Reyes-Chin-Wo S, Wang Z, Yang X, Kozik A, Arikit S, et al. 2017. Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce. Nature Communications 8:14953 doi: 10.1038/ncomms14953 |
[42] |
Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, et al. 2007. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463−67 doi: 10.1038/nature06148 |
[43] |
Li J, Zhou H, Zhang Y, Li Z, Yang Y, et al. 2020. The GSK3-like kinase BIN2 is a molecular switch between the salt stress response and growth recovery in Arabidopsis thaliana. Developmental Cell 55:367−380.E6 doi: 10.1016/j.devcel.2020.08.005 |
[44] |
Li C, Zhang B, Yu H. 2021. GSK3s: nodes of multilayer regulation of plant development and stress responses. Trends in Plant Science 26:1286−300 doi: 10.1016/j.tplants.2021.07.017 |
[45] |
Mao J, Li W, Liu J, Li J. 2021. Versatile physiological functions of plant GSK3-like kinases. Genes 12:697 doi: 10.3390/genes12050697 |
[46] |
Zhang X, Li X, Zhao R, Zhou Y, Jiao Y. 2020. Evolutionary strategies drive a balance of the interacting gene products for the CBL and CIPK gene families. New Phytologist 226:1506−16 doi: 10.1111/nph.16445 |
[47] |
Panchy N, Lehti-Shiu M, Shiu SH. 2016. Evolution of gene duplication in plants. Plant Physiology 171:2294−316 doi: 10.1104/pp.16.00523 |
[48] |
Dornelas MC, Wittich P, von Recklinghausen I, van Lammeren A, Kreis M. 1999. Characterization of three novel members of the Arabidopsis SHAGGY-related protein kinase (ASK) multigene family. Plant Molecular Biology 39:137−47 doi: 10.1023/A:1006102812280 |
[49] |
De Rybel B, Audenaert D, Vert G, Rozhon W, Mayerhofer J, et al. 2009. Chemical inhibition of a subset of Arabidopsis thaliana GSK3-like kinases activates brassinosteroid signaling. Chemistry & Biology 16:594−604 doi: 10.1016/j.chembiol.2009.04.008 |
[50] |
Wang Y, Wang X, Paterson AH. 2012. Genome and gene duplications and gene expression divergence: a view from plants. Annals of the New York Academy of Sciences 1256:1−14 doi: 10.1111/j.1749-6632.2011.06384.x |
[51] |
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, et al. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:421 doi: 10.1186/1471-2105-10-421 |
[52] |
Thompson JD, Gibson TJ, Higgins DG. 2002. Multiple sequence alignment using ClustalW and ClustalX. Current Protocols in Bioinformatics 00:2.3.1−2.3.22 doi: 10.1002/0471250953.bi0203s00 |
[53] |
Tamura K, Stecher G, Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution 38:3022−27 doi: 10.1093/molbev/msab120 |
[54] |
Wang Y, Tang H, Debarry JD, Tan X, Li J, et al. 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research 40:e49 doi: 10.1093/nar/gkr1293 |
[55] |
Green MR, Sambrook J. 2018. Quantification of RNA by real-time reverse transcription-polymerase chain reaction (RT-PCR). Cold Spring Harbor Protocols 2018:95042 doi: 10.1101/pdb.prot095042 |
[56] |
Zhang J, He S. 2021. Tobacco system for studying protein colocalization and interactions. Methods in Molecular Biology 2297:167−74 doi: 10.1007/978-1-0716-1370-2_18 |